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Abstract

The introduction of the Global Positioning System changed the way the United

States Air Force fights, by delivering world-wide, precision navigation capability to

even the smallest platforms. Unfortunately, the Global Positioning System signal is

not available in all combat environments (e.g., under tree cover, indoors, or under-

ground). Thus, operations in these environments are limited to non-precision tactics.

The motivation of this research is to address the limitations of the current preci-

sion navigation methods by fusing imaging and inertial systems, which is inspired by

observing the navigation capabilities of animals. The research begins by rigorously

describing the imaging and navigation problem and developing practical models of

the sensors, then presenting a transformation technique to detect features within an

image. Given a set of features, a rigorous, statistical feature projection technique is

developed which utilizes inertial measurements to predict vectors in the feature space

between images. This coupling of the imaging and inertial sensors at a deep level

is then used to aid the statistical feature matching function. The feature matches

and inertial measurements are then used to estimate the navigation trajectory on-

line using an extended Kalman filter. After accomplishing a proper calibration, the

image-aided inertial navigation algorithm is then tested using a combination of sim-

ulation and ground tests using both tactical and consumer-grade inertial sensors.

While limitations of the extended Kalman filter are identified, the experimental re-

sults demonstrate a navigation performance improvement of at least two orders of

magnitude over the respective inertial-only solutions.
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Fusion of Imaging and Inertial Sensors for Navigation

I. Introduction

This dissertation outlines a research effort focused on fusing optical and inertial

sensors for robust, self-contained, passive, autonomous navigation. This effort

is motivated by the requirement for autonomous navigation in environments where

external navigation reference sources (such as the Global Positioning System) are

unavailable.

Precision navigation is the cornerstone to the modern concepts of precision at-

tack and synergistic combat operations. The Global Positioning System (GPS) was

fielded in the 1980’s and first used for precision navigation and targeting in combat

during the first Gulf War [70]. This new capability of precision attack and maneuver

allowed the coalition forces to fight and win the fastest, lowest casualty, most devas-

tatingly destructive one-sided war in recorded history [28]. Precision navigation is a

force enabler which combines the classic tenets of mass and surprise in ways which

were previously impossible, leading to the development of the doctrine of precision

combat [70].

The precision combat revolution has led to new tactics and development of a

highly-focused combat force which exploits a minimum of weapons to produce the

maximum effect on the enemy. In addition, precision combat creates minimal collat-

eral damage and fratricide [26]. The Air Force’s reliance on precision combat tactics,

combined with a lack of alternative precision navigation technologies, has led to a

dependence on GPS [26, 57]. Unfortunately, GPS requires a direct line of sight to

the satellite constellation and is vulnerable to attack or disruption from internal or

external sources [26]. Thus, precision combat is currently impossible in areas not

serviced by GPS (e.g., under trees, indoors, underwater, underground or in jamming

environments).

1



The motivation of this work is to address the limitations of the current precision

navigation methods by fusing optical and inertial systems. This concept is inspired

by observing the precision navigation capabilities of animals. Research has indicated

that animals utilize visual and inertial observations to navigate with precision in the

air, land, and sea [29]. This powerful natural demonstration of navigation principles

guides this work, which builds on previous research to make precision navigation

using visual and inertial measurements possible for military applications. Not only

does the fusion of optical and inertial sensors reduce or eliminate the reliance on

GPS, it introduces the overwhelming advantages of precision combat into mission

areas which were previously impossible such as urban or underground combat.

A general overview of the available measurements and sensor fusion concepts is

presented in the next section.

1.1 Problem Definition

Navigation is defined as the determination of relative position, velocity, and

orientation from a predefined reference with respect to time. A trajectory is defined

as the continuous time history of position, velocity, and orientation of a body.

In order to estimate a trajectory, sensors are employed to make measurements

of physically observable properties of the environment which provide information re-

garding the navigation state. For this research, three different types of passive sensors

are utilized: accelerometers, gyroscopes, and imaging sensors.

1.1.1 Accelerometers. Accelerometers are designed to measure specific force,

which is the sum of linear acceleration and gravitation. The measurements from real

sensors are corrupted by errors which are described in further detail in Chapter II,

Section 2.5.1. In general terms, the accelerometer measurement is a nonlinear function

of the linear acceleration, gravitation, and measurement error sources such as thermal

noise, manufacturing errors, etc. A simple accelerometer measurement model is shown

in Figure 1.1.

2



Figure 1.1: General accelerometer block diagram. The ac-
celerometer transforms the specific force into a measurement in
the computation domain. The measurement can be corrupted
by a number of physical sources.

1.1.2 Gyroscopes. Gyroscopes measure angular rotation rate with respect

to an inertial reference. The measurements are corrupted by errors which are dis-

cussed in further detail in Chapter II, Section 2.5.2. In the most general terms, the

gyroscope measurement is a nonlinear function of the angular rotation rate, attitude,

and measurement errors. A simple measurement model for a rate gyroscope is shown

in Figure 1.2.

1.1.3 Imaging Sensors. Optical imagers measure the intensity pattern of

light focused on an array of light sensors. This two-dimensional intensity pattern is

defined as an image. The scene is the set of characteristics of the environment which

emit or reflect photons toward the imaging sensor. Imaging sensors are corrupted by

errors which are also discussed in further detail in Chapter II, Section 2.7. Thus, in

general terms, the image is a nonlinear function of the position, attitude, scene, and

measurement errors as shown in Figure 1.3.
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Figure 1.2: General rate gyroscope block diagram. The rate
gyroscope transforms the physical angular rotation rate into a
measurement in the computation domain. The measurement
can be corrupted by a number of physical sources.
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Figure 1.3: General imaging system block diagram. The imag-
ing system transforms the scene irradiance pattern into a mea-
surement in the computation domain or image. The measure-
ment can be corrupted by a number of physical sources.
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•ANGULAR RATE
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ATTITUDE

Figure 1.4: Trajectory estimation block diagram. The estima-
tor is a nonlinear function which combines sensor measurements
with known properties of the physical environment to determine
the navigation state.

1.1.4 Trajectory Estimation. The overall objective of this research is to

derive a statistically rigorous, online method to estimate the trajectory, based upon

accelerometer, gyroscope, and imaging sensor measurements. In general terms, the

trajectory estimator is a nonlinear function which combines measurements from in-

ertial and optical sensors with the known physical properties of the environment to

produce an estimate of position, velocity, and attitude. This model is shown in Fig-

ure 1.4.

More specifically, the deep integration (i.e., fusion) of optical and inertial sensors

are explored and natural synergies between the sensors are exploited [43]. This in-

cludes topics such as stochastic projections, optical and inertial calibration, predictive

feature tracking algorithms, and long-term navigation. Ultimately, a mathematically

rigorous solution is sought which provides a self-contained precision navigation capa-

6



bility to the Air Force and reduces the reliance on GPS. The specific contributions of

this research are presented in the next section.

1.2 Research Contributions

As mentioned in the previous section, the objective of this research is to exploit

the natural synergy between imaging and inertial sensors through deep integration

techniques, that is, combining image and inertial sensor data at a more fundamental

level in order to exploit mutual synergy between the two devices [43]. Specifically,

the following contributions to the science of navigation are claimed as a result of this

work.

The primary contribution is the definition of the feature space and development

of the mathematics required to perform statistically rigorous transformations in this

feature space in order to predict the features at a future time. This stochastic pro-

jection leverages the collection of inertial measurements between images in order to

improve the accuracy and speed of the attendant feature correspondence algorithm.

The feature space and the stochastic projection algorithm are developed in a general

and specific sense in Chapter IV.

This method of stochastic projections is a key enabler of the second contribution,

which is the development of a deeply-integrated, online, image and inertial navigation

algorithm [68, 69]. The deep level of integration is a unique feature of this work and

results in the integration of the inertial and imaging sensors at a more fundamental

level than has been done up to this point, which results in a new level of synergy.

This synergy can be summarized in the following manner. Given a series of raw

measurements from inertial and imaging sensors, these measurements are filtered at

the raw measurement level, using an optimal state estimate derived from the collection

of previous measurements. In other words, not only does the imaging sensor help

estimate (and correct) errors in the inertial sensor, the inertial sensor helps estimate

(and correct) errors in the imaging sensor, or, more specifically, the feature space

transformation and of the image. This technique is described in Chapter IV.
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In addition to the two primary contributions, two contributions are made in

the calibration of imaging and inertial sensors. The first contribution is the addition

of self-calibration states to the Kalman filter which allows the imaging and inertial

sensor to estimate calibration parameters using known optical references (e.g., celestial

bodies and surveyed ground points) and independent measurements of the trajectory,

such as GPS. This technique is evaluated using simulation, ground, and flight data.

Secondly, the achievable limits of calibration accuracy are examined as a relation to

the fundamental limit of sensor accuracy.

The final important contribution of this work is the implementation of the deep-

integration theory in an experimental imaging and inertial navigation sensor. The

sensor, combined with the algorithms developed in Chapter IV, demonstrated the

autonomous operation of an image and inertial sensor in both the ground and flight

environment. In addition, the performance improvement under varying navigation

scenarios is demonstrated using this novel navigation system.

This dissertation is organized as follows. Chapter II provides a detailed math-

ematical background for the optical and inertial integration problem, including a

description of the notation, primary coordinate frames and transformations, inertial

and optical sensor models, kinematic models, and an example of an online estimation

algorithm. Chapter III presents methods used to solve similar problems of inter-

est and discusses contributions and potential improvements. Chapter IV derives and

presents the candidate image and inertial sensor fusion algorithm. Chapter V provides

methodology for calibration and boresight of optical and inertial sensors. Chapter VI

describes the experimental data collection system and presents the results. Finally,

the conclusions regarding the overall theory and concepts of image and inertial navi-

gation as well as potential areas for future exploration are presented in Chapter VII.
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II. Mathematical Background

This chapter reviews the mathematical background required to adequately pose

the problem of optical and inertial sensor fusion. The chapter begins by defining

a standard mathematical notation which is used throughout the document. Next, the

navigation reference frames are defined and a mathematical technique for transform-

ing coordinates between reference frames is defined. The concept of a mathematical

error model is presented to provide background for the presentation of a rigorous

mathematical model of the components in inertial and optical sensors, including mod-

els describing their respective nonlinear properties. Next, a short discussion of the

Kalman filter is presented as a commonly implemented online recursive estimation

algorithm. In addition, the method of optimal batch estimation for both linear and

nonlinear models is presented in order to complement the Kalman filter discussion.

Finally, a method to rigorously define perturbations of direction cosine matrices is

presented, which is of fundamental importance for the remainder of the document.

2.1 Mathematical Notation

The following mathematical notation is used:

• Scalars: Scalars are represented by upper or lower case letters in italic type,

(e.g. x or G)

• Vectors: Vectors are denoted by lower case letters with bold font, (e.g. x or

φ.) The vector x is composed of a column of scalar elements xi, where i is the

element number.

• Unit Vectors: Vectors with unit length, as defined by the two norm, are

denoted by the check character, as in ‖x̌‖ ≡ 1.

• Matrices: Matrices are denoted by upper case letters in bold font. For example,

the matrix X is composed of elements Xij where i is the row index and j is the

column index.
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• Vector Transpose: The vector (or matrix) transpose is identified by a super-

script Roman T , as in xT .

• Estimated variables: Variables which are estimates of random variables are

denoted by the hat character, as in x̂.

• Computed Variables: Variables which are corrupted by errors are denoted

by the tilde character, as in x̃.

• Homogeneous Coordinates: Vectors in homogeneous coordinate form are

denoted by an underline, as in x. Homogeneous coordinate vectors are defined

to have a value of 1 in the last element.

• Direction Cosine Matrices: Direction cosine matrices from frame a to frame

b are denoted by Cb
a.

• Reference Frame: If a vector is expressed in a specific reference frame, a

superscript letter is used to designate the reference frame (e.g., pa is a vector

in the a frame.)

• Relative Position or Motion: In cases were is it important to specify relative

motion, combined subscript letters are used to designate the frames (e.g., ωab

represents the rotation rate vector from frame a to frame b.)

2.2 Reference Frames

The concept of navigation reference frames is an important fundamental for

expressing the position, velocity, and orientation of a body. For this research, the

following reference frames are defined based on those presented in [7] and [64]:

• True inertial frame (I-frame)

• Earth-fixed inertial frame (i-frame)

• Earth-centered Earth-fixed frame (e-frame)

• Navigation frame (n’-frame)
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• Earth-fixed navigation frame (n-frame)

• Body frame (b-frame)

• Binocular disparity frame (c0-frame)

• Camera frame (c-frame)

Each of these are described in the paragraphs that follow.

The true inertial frame (I -frame) is a theoretical reference frame where Newton’s

laws of motion apply. The frame is defined by an non-accelerating, non-rotating

orthonormal basis in <3. Because of the relative nature of the universe, the true

inertial frame has no predefined origin or orientation.

The Earth-centered inertial frame (i -frame) is an orthonormal basis in <3, with

origin at the center of mass of the Earth. The x and y axes are located on the equa-

torial plane, aligned with so-called fixed stars. The i -frame is a non-rotating frame

but does accelerate with respect to the true inertial frame, because the Earth revolves

about the sun, the sun revolves about our galaxy, etc. For terrestrial navigation

purposes, however, it can be considered an inertial reference.

The Earth-centered Earth-fixed frame (e-frame) is an orthonormal basis in <3,

with origin also at the Earth’s center of mass. The e-frame is rigidly attached to

the Earth, with the x axis on the equatorial plane pointing toward the Greenwich

meridian, the z axis aligned with the north pole, and the y axis on the equatorial plane

pointing toward 90 degrees east longitude. Because the e-frame is a true Cartesian

reference frame, some navigation computations are simplified.

The vehicle-fixed navigation frame (n’ -frame) is an orthonormal basis in <3, with

origin located at a predefined point on a vehicle (e.g., the vehicle’s center of gravity or

the center of a triad of inertial sensors, etc.) The vehicle-fixed navigation frame’s x,y,

and z axes point in the north, east and down (NED) directions, respectively. Although

the concept of down is open to interpretation, for the purposes of this research down

is defined as the direction a plumb line would point due to gravity. The n’ -frame
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Figure 2.1: Inertial, Earth and vehicle-fixed navigation frame.
The inertial and Earth frames originate at the Earth’s center of
mass while the vehicle-fixed navigation frame’s origin is located
at a fixed location on a vehicle.

rotates with respect to the e-frame due to translational motion of the vehicle. The i,

e and n’ -frames are illustrated in Figure 2.1. The n-frame is illustrated in Figure 2.2.

The Earth-fixed navigation frame (n-frame) is an orthonormal basis in <3,

with origin located at a predefined location on the Earth, typically on the surface.

The Earth-fixed navigation frame’s x, y, and z axes point in the north, east, and

down (NED) directions relative to the origin, respectively. As in the previous case,

down is defined as the direction of the gravity vector. In contrast to the navigation

frame, the Earth-fixed navigation frame remains fixed to the surface of the Earth.

While this frame is not useful for very-long distance navigation, it can simplify the

navigation kinematic equations for local navigation routes.

The body frame (b-frame) is an orthonormal basis in <3, rigidly attached to the

vehicle with origin co-located with the navigation frame. The x, y, and z axes point

out the nose, right wing, and bottom of an aircraft, respectively. Strapdown inertial
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Figure 2.2: Earth-fixed navigation frame. The Earth-fixed navigation frame is a
Cartesian reference frame which is perpendicular to the gravity vector at the origin
and fixed to the Earth.
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Figure 2.3: Aircraft body frame illustration. The aircraft
body frame originates at the aircraft center of gravity.

sensors are fixed to the b-frame, although they may not be located at the origin or

aligned with the axes. The b-frame is shown in Figure 2.3.

The camera frame (c-frame) is an orthonormal basis in <3, rigidly attached to a

camera, with origin at the camera’s optical center. The x and y axes point up and to

the right, respectively, and are parallel to the image plane of the camera. The z axis

points out of the camera perpendicular to the image plane. The c-frame is shown in

Figure 2.4.

The binocular disparity frame (c0-frame) is an orthonormal basis in <3, which is

rigidly attached to the lever arm located between cameras in a binocular configuration,

with origin at a specified point on the lever arm. The x, y, and z axes point forward,

right, and down, respectively. The c0-frame is shown in Figure 2.5.
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Figure 2.4: Camera frame illustration. The camera reference
frame originates at the optical center of the lens.

Figure 2.5: Binocular disparity frame illustration. The binoc-
ular disparity frame originates at the midpoint between the op-
tical center of the two camera frames, ca and cb.
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2.3 Coordinate Transformations

Coordinate transformations describe the relationships between vectors expressed

in various reference frames. As discussed in [64], the available transformations are

classified as having either three or four-parameters. Three parameter transformations

suffer from singularities at certain orientations, whereas four parameter transforma-

tions do not. For the purposes of this research, the relevant transformations are Euler

angles and direction cosine matrices.

Euler angles are elements of a three-component vector corresponding to a specific

sequence of single-axis rotations to rotate from one reference frame to another. A

common application of Euler angles is expressing the transformation from the body

to navigation frame of an aircraft as a roll, pitch and yaw angle. In this example, the

singularities can be seen at pitch angles of ±90 deg.

Direction cosine matrices (DCM) are four-parameter transformations expressed

as a 3× 3 matrix. The matrix consists of the inner product (or Cosines) of each unit

basis vector in one frame with each unit basis vector in another frame. The matrix

form of the direction cosine is convenient for transforming vectors, as in:

pb = Cb
ap

a (2.1)

where Cb
a is defined as the matrix of the inner products of the unit basis vectors.

Each element (Cb
a(ij)

) corresponds to the scalar projection (or cosine) of the i -th axis

of the a frame onto the j-th axis of the b frame.

When used to transform right-hand Cartesian coordinates, the DCM has the

following properties:

1. Det
(
Cb

a

) ≡
∣∣Cb

a

∣∣ = 1

2. Ca
b =

(
Cb

a

)−1
=

(
Cb

a

)T

3. Cc
a = Cc

bC
b
a
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The time derivative of the direction cosine matrix is defined as [64]

Ċb
a = Cb

aΩ
a
ba (2.2)

where Ωa
ba is the skew-symmetric form of the rotation vector from frame b to frame a,

expressed in the a frame (ωa
ab). The skew-symmetric operator of a vector ω is defined

as

(ω×) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (2.3)

where ωx, ωy, and ωz are the scalar elements of ω.

The above development allows expression of the navigation state (position, ve-

locity and orientation) in a convenient vector notation. In addition, vectors can be

easily transformed between reference frames, even when the frame is rotating. In the

next section, the mathematics of perturbation analysis and error models are presented.

2.4 Error Models and Perturbation Analysis

In many cases, properties of physical systems are well-modeled using systems of

nonlinear differential equations [37]. Consider the homogeneous nonlinear differential

equation

ẋ(t) = f [x(t),u(t), t] ; x(t0) = x0 (2.4)

For a given input function, u0(t), and initial condition, x0, there exists a nominal

solution trajectory:

x̄(t); t ∈ [t0,∞) (2.5)

Given this nominal solution trajectory, the effects of small changes (i.e., perturbations)

in the initial conditions or input function can be expressed using a Taylor series

expansion about the nominal solution trajectory. These perturbations are denoted
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using the following notation:

x(t) = x̄(t) + δx(t); t ∈ [t0,∞) (2.6)

u(t) = ū(t) + δu(t); t ∈ [t0,∞) (2.7)

The Taylor series approximation about the nominal is then

ẋ(t) = f [x̄(t), ū(t), t] + F(t)δx(t) + B(t)δu(t) + ε(x̄(t), ū(t), t) (2.8)

where ε(x̄(t), ū(t), t) → 0 as δx → 0 and δu → 0 and

F(t) =
∂f

∂x

∣∣∣∣
x̄(t),ū(t),t

=




∂f1

∂x1
· · · ∂f1

∂xn

...
. . .

...

∂fn

∂x1
· · · ∂fn

∂xn




∣∣∣∣∣∣∣∣∣
x̄(t),ū(t),t

(2.9)

B(t) =
∂f

∂u

∣∣∣∣
x̄(t),ū(t),t

=




∂f1

∂u1
· · · ∂f1

∂un

...
. . .

...

∂fn

∂u1
· · · ∂fn

∂un




∣∣∣∣∣∣∣∣∣
x̄(t),ū(t),t

(2.10)

By neglecting the ε term and subtracting the nominal solution, a time-varying linear

differential equation remains. This equation is an approximation of the difference

from the nominal trajectory and is called the linear perturbation equation [37]:

δẋ(t) = F(t)δx(t) + B(t)δu(t) (2.11)

A time-varying linear differential equation has a unique solution, which becomes

explicit when F(t) and B(t)δu(t) are piecewise continuous [37]. Under these condi-

tions, the solution to the time-varying linear differential perturbation equation (2.11)

is given by

δx(t) = Φ(t, t0)δx0 +

∫ t

t0

Φ(t, τ)B(τ)δu(τ)dτ (2.12)

where Φ(t, t0) is the state transition matrix from time t0 to time t.
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The perturbation solution’s linear form allows the use of linear estimation meth-

ods (e.g., Kalman filtering) and analysis tools which is discussed in more detail in

Section 2.8.

2.5 Inertial Navigation

In this section, basic inertial navigation concepts are presented, including a dis-

cussion of the strapdown navigation sensors, the measurements available, a derivation

of the system dynamics, and the resulting differential error equations.

2.5.1 Accelerometer Sensor Model. Strapdown inertial navigation systems

consist of accelerometers and gyroscopes, usually mounted in orthogonal triads. Con-

trary to their name, accelerometers do not directly measure acceleration. According

to Einstein’s Theory of Special Relativity [9], acceleration due to motion relative to

inertial space and acceleration due to gravitation (or mass attraction) are indistin-

guishable. Thus, accelerometers produce a measurement of specific force, which is

the difference between the acceleration relative to inertial space and the gravitation

vector, defined by

f = p̈− g (2.13)

where f is the specific force vector, p is the position vector, and g is the gravitation

vector.

The accelerometer output is corrupted by a number of error sources, which are a

function of the design of the sensor [64]. In general terms, the dominant accelerometer

errors are as follows:

• Bias: A bias is a constant or slowly-varying additive error. Some bias com-

ponents can be measured and corrected through factory calibration techniques,

although others will inevitably remain. Biases can change after power cycles or

after temperature fluctuations.
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• Scale Factor: A scale factor error is a constant or slowly-varying multiplicative

error. As with bias errors, some scale factor effects can be corrected through

calibration.

• Sensor Misalignment: Sensor misalignment errors are a result of mechanical

fabrication and installation errors. These errors result in a difference between

the accelerometers’ sensitive axes and the platform reference.

• Vibration: These errors cause a measurement bias as a function of certain

vibrational modes.

• Measurement Noise: Measurement noise is observed as an additive error

component with high-bandwidth power spectral density. This noise component

is the theoretical result of many high-bandwidth sources such as electrical noise,

thermal noise, etc.

• Gravity Model Errors: Because the accelerometer measures specific force,

the acceleration due to local gravity must be added to the accelerometer output

to produce an estimate of acceleration in the inertial frame. Errors in this local

gravity model produce additive errors in acceleration. Note the gravity model

errors are not errors in the accelerometer measurement itself, however they arise

when converting from specific force to acceleration.

The above error sources can be modeled as a quadratic function. Thus, the

measured accelerometer output in the body reference frame, f b
m, is

f b
m = f b + A1f

b + AT
2

(
f b

)T
f bA2 + ab + ηb

a (2.14)

where the f b vector is the true specific force in the body frame, A1 and A2 are the

combined accelerometer first and second-order error component matrices, ab is the

bias vector, and ηb
a is the additive measurement noise vector.

2.5.2 Gyroscope Sensor Model. The gyroscopes used in strapdown navi-

gation systems measure angular rate relative to inertial space, ωb
ib. By rearranging
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Eqn. (2.2), the measurement can be expressed using the inertial to body direction

cosine matrix as

Ωb
ib = Cb

iĊ
i
b (2.15)

where Ωb
ib is the skew-symmetric form of the angular rate vector, ωb

ib. The skew

symmetric form is defined in Eqn. 2.3.

Gyroscopic sensors are subject to errors which corrupt the angular rate mea-

surement [64]. The dominant gyroscopic errors are as follows:

• Fixed Bias (g-independent): This bias is a constant or slowly-varying addi-

tive error which is independent of acceleration.

• Acceleration-dependent Bias: This is a bias which is a function of the cur-

rent acceleration applied to the sensor. This bias has components which act

both in the gyroscope’s sensitive axis as well as orthogonal to the sensitive axis.

• Anisoelastic Bias: The anisoelastic bias component is proportional to the

product of acceleration along orthogonal axes.

• Scale Factor: A scale factor error is a constant or slowly-varying multiplicative

error.

• Sensor Misalignment: Sensor misalignment errors are a result of mechanical

fabrication and installation errors. These errors result in a difference between

the gyroscopes’ sensitive axes and the platform reference.

• Measurement Noise: Measurement noise is observed as an additive error

component with high-bandwidth power spectral density. This noise component

is the theoretical result of many high-bandwidth sources such as electrical noise,

thermal noise, etc.

Similarly to the accelerometer errors, the gyroscopic errors can also be modeled

as a quadratic function. Thus, the measured angular rate output in the body reference
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frame, ωb
ibm

, is

ωb
ibm

= ωb
ib + B1ω

b
ibm

+ BT
2

(
ωb

ibm

)T
ωb

ibm
B2

+B3f
b + bb + ηb

b (2.16)

where B1 and B2 are the combined gyroscopic first and second order error components,

B3 is the acceleration-dependent bias term, bb is the bias, and ηb
b is the additive

measurement noise.

2.5.3 Inertial Navigation Dynamics. In this section, the nonlinear dynamic

equations governing a strapdown inertial navigation system are developed from the

basic navigation equations. These dynamic equations are used in the next section to

derive a linear perturbation error model.

The error equations are developed in the Earth-fixed navigation frame defined

in Section 2.2. The Earth-fixed navigation frame is preferred for the following reasons:

• The Earth-fixed navigation frame is a Cartesian space in <3 which makes the

units consistent between axes and is conducive to good scaling.

• The Earth-fixed navigation frame results in a simplified dynamic model with

minimal loss of accuracy over short distances.

• Earth-fixed navigation frame cartesian navigation state parameters can be easily

transformed to geodetic coordinates (i.e., latitude, longitude, and altitude) for

interpretation and analysis.

The navigation states of interest are measures of position, velocity, and orien-

tation with respect to the navigation frame, defined as:

• The pn vector is the three-dimensional position of the vehicle relative to the ori-

gin of the Earth-fixed navigation frame, expressed in the Earth-fixed navigation

frame.
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• The vn vector is the three-dimensional velocity of the vehicle relative to the

Earth-fixed navigation frame, expressed in the Earth-fixed navigation frame.

• The Cn
b matrix is the DCM which transforms vectors from the body frame to

the Earth-fixed navigation frame.

The origin location of the Earth-fixed navigation frame is defined relative to the ECEF

frame as pe
0. The orientation of the navigation frame is defined by the direction

cosine matrix, Ce
n. Because the Earth-fixed navigation frame is, by definition, rigidly

attached to the Earth, the position and orientation are static, e.g. ṗe
0 = 0 and Ċe

n = 0.

2.5.4 Attitude Dynamics. Applying the definition of the derivative of a

DCM provided in Eqn. (2.2) to Cn
b yields

Ċn
b = Cn

b Ω
b
nb (2.17)

where Ωb
nb is the Earth-fixed navigation frame-to-body frame angular rate, expressed

in the b frame and in skew-symmetric form. In vector form, this vector is the difference

between the body-to-inertial angular rate (ωb
ib), the Earth’s sidereal angular rate (ωe

ie),

and the angular rate of the navigation frame (ωn
en), all expressed in the b frame:

ωb
nb = ωb

ib −Cb
nωn

en −Cb
nC

n
e ω

e
ie (2.18)

By definition, the angular rate of the navigation frame relative to the Earth, (ωn
en),

is zero, which simplifies the above equation to

ωb
nb = ωb

ib −Cb
nC

n
e ω

e
ie (2.19)

Converting Eqn. (2.19) to skew-symmetric form, substituting into (2.17), and

simplifying yields the time-varying attitude dynamic equation

Ċn
b = Cn

b Ω
b
ib −Cn

eΩ
e
ieC

e
nC

n
b (2.20)
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2.5.5 Position and Velocity Dynamics. The position and velocity dynamics

are calculated by first expressing the position in the i frame:

pi = Ci
e [pe

0 + Ce
np

n] (2.21)

where pe
0 is the location of the origin of the navigation frame, with respect to the

e-frame, and Ce
n is the DCM from the navigation frame to the e-frame. Taking the

derivative of 2.21 using the chain rule yields

ṗi = Ci
eC

e
nṗ

n + Ci
eΩ

e
ie [pe

0 + Ce
np

n] (2.22)

An additional derivative yields the acceleration with respect to the inertial frame:

p̈i = Ci
eC

e
np̈

n + 2Ci
eΩ

e
ieC

e
nṗ

n + Ci
e (Ωe

ie)
2 [pe

0 + Ce
np

n] (2.23)

Recalling the definition of specific force from Eqn. (2.13) and substituting into

(2.23) yields

f i + gi = Ci
eC

e
np̈

n + 2Ci
eΩ

e
ieC

e
nṗ

n + Ci
e (Ωe

ie)
2 [pe

0 + Ce
np

n] (2.24)

Solving for the acceleration with respect to the Earth-fixed navigation frame (p̈n)

results in

p̈n = fn − 2Cn
eΩ

e
ieC

e
nṗ

n −Cn
e (Ωe

ie)
2 [pe

0 + Ce
np

n] + gn (2.25)

The velocity with respect to the Earth-fixed navigation frame is defined as

ṗn = vn (2.26)
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Substituting (2.26) into (2.24) and expressing the specific force in the b frame yields

the time-varying position and velocity dynamic equation:

v̇n = Cn
b f

b − 2Cn
eΩ

e
ieC

e
nṗ

n −Cn
e (Ωe

ie)
2 [pe

0 + Ce
np

n] + gn (2.27)

In the next section, these dynamic equations are used to derive error dynamics

using perturbation methods.

2.5.6 Development of Observation Equations. The development of the strap-

down INS dynamics is completed with respect to the Earth-fixed navigation frame. It

is necessary in some cases to determine the relationship between coordinates expressed

in the Earth-fixed navigation frame and a global reference system, which motivates

the development of an appropriate coordinate system transformation. In this case,

the well-known World Geodetic System of 1984 (WGS-84) is used. The parameters

of interest are defined as

• L is the geodetic latitude in radians.

• λ is the longitude in radians.

• h is the height above the WGS-84 ellipsoid in meters.

• vn′ is the velocity vector with respect to the Earth, expressed in the navigation

frame.

• φ, θ and ψ are the roll, pitch and yaw angles (in radians) to rotate from the

navigation frame to the body frame.

Because the WGS-84 system origin is located at the center of the Earth [7],

the Earth-fixed navigation frame parameters are transformed to the Earth-centered
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Earth-fixed reference frame using the following transformations:

pe = pe
0 + Ce

np
n (2.28)

ve = Ce
nv

n (2.29)

Ce
b = Ce

nC
n
b (2.30)

The observed parameters are calculated in two steps. Longitude is calculated di-

rectly using the four-quadrant arctangent function and elements of the ECEF position

vector, pe, as

λ = arctan

(
pe

y

pe
x

)
(2.31)

The geodetic latitude and height above ellipsoid are calculated by solving the following

nonlinear inverse relationships, assuming a WGS-84 ellipsoidal Earth model [7]:

(pe
x)

2 + (pe
y)

2 = [N + h]2 cos2 L (2.32)

pe
z = [N(1− e2) + h] sin L (2.33)

where N is the geodetic radius of meridian in meters, defined by

N =
a√

1− e2 sin2 L
(2.34)

In the above equation, a is the WGS-84 semi-major axis, and e is the WGS-84 ellipsoid

eccentricity [7]. The navigation frame velocities are computed using the earth frame

to navigation frame (North-East-Down) transformation (Cn′
e ) [64]:

Cn′
e =




− sin L cos λ − sin L sin λ cos L

− sin λ cos λ 0

− cos L cos λ − cos L sin λ − sin L


 (2.35)
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The navigation frame velocity (vn′) is simply the matrix multiplication of the

earth frame to navigation frame DCM and the earth frame velocity vector:

vn′ = Cn′
e ve (2.36)

To obtain the Euler angles, the direction cosine matrix from the navigation

frame to the body frame (Cb
n′) is calculated as

Cb
n′ = Cb

e(C
n′
e )T (2.37)

The Cb
n′ matrix can be expressed equivalently composed of Euler angles [64]:

Cb
n′ =




cos ψ cos θ sin ψ cos θ −sinθ

− sin ψ cos φ + cos ψ sin θ sin φ cos ψ cos φ + sin ψ sin θ sin φ cos θ sin φ

sin ψ sin φ + cos ψ sin θ cos φ − cos ψ sin φ + sin ψ sin θ cos φ cos θ cos φ




(2.38)

where φ, θ, and ψ are the roll, pitch, and yaw Euler angles, respectively. Hence, the

Euler angles can be computed using terms from Cb
n′ :

φ = arctan

(
Cb

n′23

Cb
n′33

)
(2.39)

θ = − arcsin
(
Cb

n′13

)
(2.40)

ψ = arctan

(
Cb

n′12

Cb
n′11

)
(2.41)

Note that the use of Euler angles causes a singularity when θ = ±π
2
, as expected.

2.6 Inertial Navigation Error Model

As shown in the previous section, the inertial navigation dynamics are expressed

as nonlinear differential equations. Analyzing the differences between the output of

an inertial navigation system and the true trajectory motivates the development of
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an inertial navigation error model. This perturbation model can be used to estimate

the vehicle’s true trajectory by fusing optical and inertial sensors.

2.6.1 Inertial Sensor Error Model. For this derivation, the accelerometer

and gyroscopic errors are modeled as a bias plus a random noise. The biases are

modeled as first-order Gauss-Markov processes [37]. The random measurement noise

is modeled as an additive white Gaussian noise process. The resulting accelerometer

measurement model becomes

f b
m = f b + ab + wb

a (2.42)

where ab is the accelerometer bias and wb
a is an additive white Gaussian noise process.

Similarly, the resulting gyroscope measurement model is

ωb
ibm

= ωb
ib + bb + wb

b (2.43)

where bb is the gyroscope measurement bias and wb
b is an additive white Gaussian

noise process.

The bias is a first-order Gauss-Markov process which is expressed by the follow-

ing differential equations

ȧb = − 1

τa

ab + wb
abias

(2.44)

ḃb = − 1

τb

bb + wb
bbias

(2.45)

The time constants are represented by τa and τb for the accelerometer and gyroscopic

biases, respectively. The processes are driven by the white noise terms, wb
abias

and

wb
bbias

.

2.6.2 Attitude Error Development. The development of the attitude error

dynamics begins with a definition of the error states. The attitude error vector (ψ)
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is modeled as a vector of small angles about the north, east and down axes of the

navigation frame (ψn,ψe, and ψd, respectively) [71]. The attitude error vector is

defined as

ψ =




ψn

ψe

ψd


 (2.46)

Because the angular errors are assumed to be small, the computed body-to-

Earth-fixed navigation frame DCM can be expressed as [64]

C̃n
b ≈ [I− (ψ×)]Cn

b (2.47)

where (ψ×) is the skew-symmetric form of ψ. Taking the derivative of (2.47) with

respect to time yields

˙̃Cn
b = −

(
ψ̇×

)
Cn

b + [I− (ψ×)] Ċn
b (2.48)

Substituting (2.17) into (2.48) yields

C̃n
b Ω̃

b
nb = −

(
ψ̇×

)
Cn

b + [I− (ψ×)]Cn
b Ω

b
nb (2.49)

Solving for (ψ̇×) results in

(
ψ̇×

)
= [I− (ψ×)]Cn

b Ω
b
nbC

b
n − C̃n

b Ω̃
b

nbC
b
n (2.50)

The calculated body-to-earth-fixed navigation frame rotation rate vector, ω̃b
nb, is de-

fined as

ω̃b
nb = ωb

ibm
− C̃b

nC
n
e ωe

ie (2.51)

where ωb
ibm

is the body-to-inertial angular rate vector measured by the gyroscopes.
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Substituting (2.47), (2.51), and (2.43) into (2.50) results in

(
ψ̇×

)
= [I− (ψ×)]Cn

b Ω
b
nbC

b
n

− [I− (ψ×)]Cn
b

[
Ωb

nb +
(
bb×)− [(

Cb
n [ψ×]Cn

e ωe
ie

)×]

+
(
wb

b×
)]

Cb
n (2.52)

Simplifying by eliminating common terms yields

(
ψ̇×

)
= − [I− (ψ×)]Cn

b

[(
bb×)− [(

Cb
n [ψ×]Cn

e ωe
ie

)×]

+
(
wb

b×
)]

Cb
n (2.53)

Eliminating second-order terms and collapsing the skew-symmetric form yields the

linearized angular error differential equation

ψ̇ = − [(Cn
e ω

e
ie)×] ψ −Cn

b b
b −Cn

b w
b
b (2.54)

2.6.3 Velocity Error Development. The development of the velocity error

dynamics proceeds similarly to the attitude errors. The position and velocity errors

(δpn and δvn, respectively) are defined as

δpn = p̃n − pn (2.55)

δvn = ṽn − vn (2.56)

These definitions are substituted into the dynamics model to derive the dynamics of

the position and velocity errors.

Recall the acceleration dynamics equation (2.27) derived in Section 2.5.5:

v̇n = Cn
b f

b − 2Cn
eΩ

e
ieC

e
nṗ

n −Cn
e (Ωe

ie)
2 [pe

0 + Ce
np

n] + gn (2.57)
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The true acceleration with respect to the Earth-fixed navigation frame, v̇n, consists of

a specific force, Coriolis effects, centripetal acceleration, and a gravitation term. The

centripetal acceleration and gravitation terms are typically combined into a single

gravity vector, ge(pe). The gravity vector is formally defined as the gradient of the

gravity potential, W (pe), shown in [7] as the sum of the gravitation and centripetal

acceleration as a function of Cartesian position relative to the center of the Earth:

W (pe) =
GM

‖pe‖ +
1

2
peT

ΩeT

ie Ωe
iep

e + H.O.T. (2.58)

where GM is the Earth’s gravitational constant. Substituting the gravity function

into Equation (2.57) yields the acceleration dynamics equation:

v̇n = Cn
b f

b − 2Cn
eΩ

e
ieC

e
nv

n + Cn
eg

e (pe
0 + Ce

np
n) (2.59)

The calculated velocity vector differential equation is corrupted by both the

accelerometer measurement errors as well as the attitude errors developed in Sec-

tion 2.5.5:

˙̃vn = C̃n
b f

b
m − 2Cn

eΩ
e
ieC

e
nṽ

n + Cn
eg

e (pe
0 + Ce

np̃
n) (2.60)

Substituting the attitude, velocity, position, and accelerometer measurement error

equations into (2.60) yields

˙̃vn = [I− (ψ×)]Cn
b

(
f b + ab + wb

a

)− 2Cn
eΩ

e
ieC

e
n (vn + δvn) (2.61)

+Cn
eg

e (pe
0 + Ce

np
n + Ce

nδp
n)

The acceleration error vector, δv̇n, is

δv̇n = ˙̃vn − v̇n (2.62)
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Substituting (2.57) and (2.61) into (2.62) and eliminating second-order terms yields

δv̇n = Cn
b a

b − (ψ×)Cn
b f

b − 2Cn
eΩ

e
ieC

e
nδv

n + Cn
eGCe

nδp
n + Cn

b w
b
a (2.63)

where G is the gradient of the gravity vector, ge(pe
0 + Ce

np
n). This gradient is calcu-

lated as [7]

G = ∇g|pn (2.64)

G =
GM

‖pe‖3

[
3p̌e(p̌e)T − I

]− (Ωe
ie)

2 (2.65)

where p̌e is the ECEF position unit vector. The second term of (2.63) can be rear-

ranged to facilitate state-space form as follows

(ψ×)Cn
b f

b = ψ × fn (2.66)

= − (fn×) ψ (2.67)

Substituting into (2.63) yields the linear stochastic velocity error model:

δv̇n = Cn
eGCe

nδp
n − 2Cn

eΩ
e
ieC

e
nδvn + (fn×) ψ + Cn

b a
b + Cn

b w
b
a (2.68)

Finally, the position error is simply the kinematic relationship between position

and velocity:

δṗn = δvn (2.69)

2.6.4 State-space Model. The error dynamics can now be expressed using

the standard linear, stochastic, state-space model driven by white noise [37]:

δẋ(t) = F(t)x(t) + G(t)w(t) (2.70)

Note these error dynamics correspond to a specific accelerometer and gyroscope error

model. In this example, the errors are modeled by a time-varying bias plus ran-
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dom noise. Adding or reducing the complexity of the error model would change the

resulting error dynamics.

The navigation error state vector, δx, consists of position (δpn), velocity (δvn),

attitude (ψ), accelerometer bias (δab), and gyroscope bias errors (δbb) and is ex-

pressed as a vector of fifteen elements:

δx =




δpn

−−−
δvn

−−−
ψ

−−−
δab

−−−
δbb




15×1

(2.71)

The driving noise vector, w, consists of the noise terms associated with the

accelerometer measurement (wb
a), gyroscope measurement (wb

b), accelerometer bias

(wb
abias

), and gyroscope bias (wb
bbias

), and is expressed as

w =




wb
a

−−−
wb

b

−−−
wb

abias

−−−
wb

bbias




12×1

(2.72)
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The overall error dynamics in augmented state-space form are

δẋ =




03 | I3 | 03 | 03 | 03

−−− −−− −−− −−− −−−
Cn

eGCe
n | −2Cn

eΩ
e
ieC

e
n | (fn×) | Cn

b | 03

−−− −−− −−− −−− −−−
03 | 03 | − (Cn

e ω
e
ie)× | 03 | −Cn

b

−−− −−− −−− −−− −−−
03 | 03 | 03 | − 1

τa
I3 | 03

−−− −−− −−− −−− −−−
03 | 03 | 03 | 03 | − 1

τb
I3




15×15

δx

+




03 | 03 | 03 | 03

− − − −
Cn

b | 03 | 03 | 03

− − − −
03 | −Cn

b | 03 | 03

− − − −
03 | 03 | I3 | 03

− − − −
03 | 03 | 03 | I3




15×12

w (2.73)

Note that the error dynamics are a time-varying function of the trajectory flown.

2.7 Digital Imaging

In this section, concepts relative to digital imaging and object tracking are

presented, including a discussion of the optical sensor model, projection theory, and

fixed-object tracking.

2.7.1 Optical Sensor Model. An optical sensor is a device designed to mea-

sure the intensity of optical energy (light) entering the sensor through an aperture.
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Imaging sensors consist of an array of light-sensitive detectors which create a multidi-

mensional light intensity measurement. In this section, the basic physical properties

of an optical sensor are presented, and a model representing an optical sensor is given.

For the purposes of this discussion, the world is defined as a collection of all

real objects. Some objects are sources of radiometric illumination or radiance. These

light sources illuminate the world and interact with the other physical objects through

various types of reflection. The amount of light propagating along a certain direction

is defined as the irradiance [36]. The physical irradiance pattern entering the aperture

of the optical sensor is defined as the scene and is represented by a time-varying array

of nonnegative rational numbers, O(x, y, t), corresponding to the photon arrival rate.

A digital optical imaging sensor consists of an aperture, lens, detector array,

and sampling array. A simple imaging system model is shown in Figure 2.6. The lens

focuses the scene on the detector array. The light pattern focused on the detector

array is defined as the image and represented by, I(x, y, t). In statistical terms, the

image is the mean photon arrival rate. The detector array converts the light energy

into a voltage or a charge which is converted to a digital value by the sampling array.

The sampling array is assumed to be a square grid, although other patterns can be

designed (e.g., honeycomb) [24].

The lens is a natural low-pass filter in the spatial domain, with a cutoff fre-

quency (fc) defined by the aperture diameter (D), wavelength of light source (λ), and

focal length (f) [15]:

fc =
D

λf
(2.74)

Thus, a point source of light would appear slightly blurred on the image plane. Assum-

ing spatial invariance, this blurring due to the lens is represented by the point spread

function, H(x, y), where x and y are the spatial differences in the x and y directions,

respectively. The image can now be expressed mathematically as the convolution of
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Figure 2.6: Imaging system model. The imaging system trans-
forms the scene into a digital image. The major components of
the camera are the optics, light detector, amplifier, and analog
to digital converter.

the scene and point spread function [20]:

I(x, y, t) =

∫

ξ∈X

∫

ρ∈Y

O(ξ, ρ, t)H(x− ξ, y − ρ) dρ dξ (2.75)

where X and Y are the dimensions of the image array in the x and y directions,

respectively.

The light energy in the image is integrated over a period defined as the dwell

time (∆t). The integration output is defined as

Id(x, y, ti) =

∫ ti

ti−∆t

I(x, y, t)dt (2.76)

At the end of an integration period, the accumulated charge of the sensor is pro-

portional to the number of photons received, which is referred to as the quantum

efficiency (p). The resulting accumulated charge is represented by

E(x, y, ti) = p Id(x, y, ti) (2.77)
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Due to the quantum nature of light, this accumulated charge is corrupted by a random

photon counting noise, sometimes referred to as shot noise. The accumulated charge

is converted to a voltage by an amplifier with gain g, bias b, and additive readout

noise parameter wa:

D(x, y, ti) = g E(x, y, ti) + b + wa (2.78)

This voltage is then converted to a digital number in the quantizer:

Ds(x, y, ti) = q [D(x, y, ti)] (2.79)

which can be stored in a computer’s memory.

As mentioned above, the image model includes three sources of noise: pho-

ton counting noise, readout noise, and quantization noise. Photon counting noise is

modeled as a Poisson process [48]. The probability distribution function is

P [E(x, y, ti) = k] = e−Id(x,y,ti)
Id(x, y, ti)

k

k!
, k ∈ Z∗ (2.80)

Readout noise includes the effects of amplifier thermal noise on the readout voltages

and is modeled as independent, identically distributed zero-mean Gaussian distribu-

tions with covariance matrix Paa. Quantization noise results from the errors induced

by converting a nonnegative real voltage from the amplifier to a digital number with

fixed precision. Assuming a linear quantizer with a precision of n bits and range of V

volts, the quantization noise can be modeled as a zero-mean uniform distribution [48]

with variance

σ2
q =

1

12

(
V 2

22n

)
(2.81)

In the next section, a mathematical model describing the relationship between

point locations in the world and image is derived.

2.7.2 Projection Theory. The camera optical properties define the rela-

tionship between the scene and the projected image. Recalling the simple camera
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Figure 2.7: Thin lens camera model. The thin lens model
directs parallel light rays toward the focus, resulting in an image.
Figure is not to scale.

model (Figure 2.6), the lens focuses the incoming irradiance pattern (i.e., scene) onto

the image plane. For a theoretical thin lens, the projection is a function of the fo-

cal length of the lens and the distance from the lens, as shown in Figure 2.7. This

relationship is expressed by the fundamental equation of the thin lens [36]:

1

Z
+

1

z
=

1

f
(2.82)

where Z is the distance from the object to the lens, z is the distance from the lens to

the image plane, and f is the focal length.

As the aperture of the thin lens decreases to zero, the system can be modeled

as a pinhole camera (see Figure 2.8). In this model, all incoming light must pass

through the optical center and is projected on an image plane located at a distance

f from the lens. The resulting image is an inverted projection of the scene.

This model can be further simplified by placing a virtual image plane in front

of the optical center, as shown in Figure 2.9. Given a point source at location sc the

resulting location of the point source on the image plane, relative to the optical center
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Figure 2.8: Pinhole camera model. The pinhole camera is a
theoretical camera model where a thin lens aperture approaches
zero. The projected image is inverted on the image plane.

of the camera, is given by

sproj =

(
f

sc
z

)
sc (2.83)

where sc
z is the distance of the point source from the optical center of the camera in

the zc direction.

In order to interpret the calculated projection in a digital image, the physical

image plane coordinates must be converted to a coordinate system based on pixel

location. The following development defines the pixel coordinate system and derives

the transformation from the physical image plane to pixel location. The image plane

consists of an (M ×N) grid of rectangular pixels with height H and width W , shown

in Figure 2.10. The origin of the projection frame is located at the physical center

of the array. The origin of the pixel coordinate system is located beyond the upper

left corner of the array, such that the center of the upper left pixel corresponds to

the (1,1) pixel coordinate. This definition of pixel coordinates corresponds to the

elemental matrix locations when the image is stored in a computer.

The transformation from the projection coordinates to pixel coordinates is given

by

spix =


 −M

H
0 0

0 N
W

0


 sproj +




M+1
2

N+1
2


 (2.84)

39



��¡����

� ¢����

£�

IM
AGE P

LA
NE

�¢�

¡�
�����

SCENE

FOCUS

�




Figure 2.9: Camera projection model. The pinhole camera
model is modified by placing a virtual image plane one focal
length in front of the optical center. As a result, this model
eliminates the image inversion present in the standard pinhole
camera model.

Combining Equations (2.83) and (2.84) yields the following transformation from cam-

era frame to homogeneous pixel coordinates

spix =
1

sc
z




−f M
H

0 M+1
2

0 f N
W

N+1
2

0 0 1


 sc (2.85)

=
1

sc
z

Tpix
c sc (2.86)
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Figure 2.10: Camera image array. The camera imager consists
of an (M × N) array of pixels. The physical height and width
of the array are represented by H and W , respectively.
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where Tpix
c is the homogeneous transformation matrix from camera frame to pixel

frame. The inverse transformation is calculated as

Tc
pix = (Tpix

c )−1 (2.87)

=




− H
fM

0 H(M+1)
2fM

0 W
fN

−W (N+1)
2fN

0 0 1


 (2.88)

A transformation from a target location in Earth-fixed navigation frame coor-

dinates to pixel coordinates can now be derived based on the navigation state. The

geometry is shown in Figure 2.11. The line of sight vector, s, is the vector difference

between the target location t and the camera position, which are both available in

Earth-fixed navigation frame coordinates:

sn = tn − pn (2.89)

The resultant vector can be transformed to the camera reference frame using the

Earth-fixed navigation-to-body and body-to-camera frame direction cosine matrices:

sc = Cc
bC

b
ns

n (2.90)

Finally, the pixel location is calculated using Eqn. (2.86).

2.7.3 Nonlinear Optical Distortion. As discussed in [36], the optical prop-

erties of a lens can be significantly different than the pinhole model. This distortion

is primarily radial in nature and can be identified when straight lines appear curved

in the image. An optical distortion model is desired which transforms locations in a

distorted image to an equivalent pixel location which agrees with the pinhole camera

model.

42



�

�

�

�� ��

��

��
�� ��

Figure 2.11: Target to image transformation geometry. The
relationship between the camera position, (p), and target loca-
tion, (t), can be expressed in pixel coordinates using transfor-
mations based on the navigation state and camera parameters.
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In [36] and [11], the following radial distortion correction is proposed:

zu = Pa(r)(z
d − c0) + c0 (2.91)

where zd are the distorted pixel locations, zu are the undistorted pixel locations, c0 is

the center of optical distortion (in pixels), and Pa(r) is a polynomial expansion in r.

This is defined as

Pa(r) = 1 +
2∑

i=1

a2ir
2i (2.92)

where r is the radial distance from the center of optical distortion

r = ‖zd − c0‖ (2.93)

and an are the coefficients of the polynomial.

Concepts related to tracking objects in the scene are presented in the next

section.

2.7.4 Fixed Object Tracking. As shown in the previous section, an image

is a transformation based on the illumination of objects in the field of view. It is

well known that a sequence of images of a particular scene can provide information

regarding the camera location, camera orientation, and the location of objects in the

field of view [36,47,62,63]. This is accomplished by identifying and matching common

objects in multiple images, which is known as feature tracking.

Feature tracking methods typically begin by analyzing an image to determine

the location of features—areas which are identifiable by some measure and which have

the highest potential for locating the matching feature in subsequent images. The

classic feature detection algorithms are the Lucas-Kanade feature tracker [35] and the

similar Harris corner detector [18]. These algorithms attempt to find a maximum

amount of detail information by calculating the eigenvalues of the following matrix
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over a window, W:

G =




∑
x,y∈W I2

x(x, y)
∑

x,y∈W Ix(x, y)Iy(x, y)
∑

x,y∈W Ix(x, y)Iy(x, y)
∑

x,y∈W I2
y(x, y)


 (2.94)

where Ix and Iy are the gradients of an image I in the x and y directions, respectively.

A zero eigenvalue corresponds to zero detail in the direction of the eigenvector, which

results from a flat image. The eigenvalues increase with increasing detail, indicating

a potentially distinct feature. Features are declared by thresholding the eigenvalues

and choosing the strongest candidates. Harris refines this method by defining the

following metric:

C(G) = det(G) + k
[
trace2(G)

]
(2.95)

which is equivalent to

C(G) = (1 + 2k)σ1σ2 + k(σ2
1 + σ2

2) (2.96)

where σ1 and σ2 are the eigenvalues of G, and k is a tuning parameter. Smaller

values of k favor detail in both directions, while larger values of k are more accepting

of detail in only one direction [18].

More robust feature selection algorithms have been proposed. An example is the

scale-invariant feature tracker (SIFT) method developed by Lowe [33]. These SIFT

features are invariant over scale and rotational changes, thus providing a more robust

solution for arbitrary motion. The SIFT algorithm is described in further detail in

Chapter IV. In addition, Bhanu proposes the use of genetic algorithms for feature

detection [3]. In any case, identifying robust features is a rich problem and remains

an area of active research.

After a feature corresponding to a physical object has been identified in one

frame, the same feature must be located in subsequent frames. The most common

approach defines an error cost function designed to represent the “difference” between
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the features. A minimization then determines the pixel location which has the lowest

error cost, resulting in the best-match. For example, the classic Lucas-Kanade tracker

seeks to minimize the sum of the squared differences of the image intensity over a

specified region [35]. Given a sequence of images {I(t1), I(t1), . . . , I(tn)}, assume a

feature is defined as a region W1 on I(t1) as

F1 = I(x, y, t1), x, y ∈ W1 (2.97)

The sum of squared differences for the feature F1 and image I(tn) is

C1n(α, β) =
∑

x∈W1

∑
y∈W1

[I(x− α, y − β, tn)− I(x, y, t1)]
2 (2.98)

The cost function, C, is minimized over the shift vector, (α, β), to determine the best

feature match.

In this section, a simple camera and image model is presented which incorpo-

rates measurement errors. The model is then used to define feature selection and

correspondence methods for the most common feature tracking methods.

2.8 Kalman Filtering

In this section, Kalman filtering concepts are presented, including a development

of the linear Kalman filter equations, the extension of the linear equations to nonlinear

problems, and the benefits of tightly coupling sensors using a feedback Kalman filter.

2.8.1 Linear Kalman Filter. The Kalman filter is a recursive, optimal data

processing algorithm [37]. The goal of the algorithm is to estimate the solution to a

linear stochastic differential equation. In this development, the general form of the

stochastic differential equation is explained, and the Kalman filter propagation and

update equations are presented.
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The general form of the linear stochastic differential equation is

ẋ = Fx + Bu + Gw (2.99)

where x is the state vector, F is the homogeneous system dynamics matrix, B is the

input matrix, u is the input vector, G is the noise transformation matrix, and w is

a vector of white noise processes. The white noise vector is a zero mean Gaussian

process with covariance

E{w(t)wT (t + τ)} = Q(t)δ(τ) (2.100)

where δ(t) is the Dirac delta function.

Because the state vector is a vector of random elements, the solution to the

stochastic differential equation is a time-varying probability density function. The

Kalman filter derivation assumes Gaussian distributions for all random variables, thus

a complete characterization of the probability density function requires calculating

only the mean and covariance of the state vector [66].

The mean of the state vector is defined as

mx = E{x(t)} = Φ(t, t0)E{x(t0)}+

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ (2.101)

where Φ(t, t0) is the state transition matrix from time t0 to time t, and E{·} is

the expectation operator [37]. Note that this is equivalent to the solution of the

deterministic linear differential equation.

The covariance of the state vector is defined as the difference between the mean

square value and the mean:

Pxx(t) = E{x(t)xT (t)} −mx(t)m
T
x (t) (2.102)
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The state covariance matrix expressed as a function of the system dynamic parameters

is

Pxx(t) = Φ(t, t0)Pxx(t0)Φ
T (t, t0) +

∫ t

t0

Φ(t, τ)G(τ)Q(τ)GT (τ)ΦT (t, τ)dτ (2.103)

Because the state vector is defined as a Gaussian process, the maximum a

posteriori (MAP) estimate of the state is simply the mean [66]. The MAP state

estimate is denoted with the hat notation:

x̂(t) = mx(t) (2.104)

The covariance is an estimate of the uncertainty in the state estimate and is defined

using the hat notation:

P̂(t) = Pxx(t) (2.105)

In addition to the state dynamics, the Kalman filter normally incorporates dis-

crete measurements. The measurements are random vectors modeled as linear func-

tions of the state vector with additive noise:

z(ti) = H(ti)x(ti) + v(ti) (2.106)

where H(ti) is the observation matrix and v(ti) is a zero-mean white Gaussian noise

vector with covariance defined by

E{v(ti)v
T (tj)} = R(ti)δij (2.107)

where δij is the Kroeneker delta function.

Incorporating the system dynamics and update models into an algorithm results

in two distinct operations: measurement updates and propagation. Assume measure-

ments are available at discrete times, (ti, ti+1, . . . , ti+n), and estimates of the mean
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and covariance are available immediately prior to time ti (denoted by t−i .) The mean

and covariance after incorporating the update (denoted by t+i ), is defined as [37]

x̂(t+i ) = x̂(t−i ) + K(ti)
[
z(ti)−H(ti)x̂(t−i )

]
(2.108)

P̂(t+i ) = P̂(t−i )−K(ti)H(ti)P̂(t−i ) (2.109)

where K(ti) is the Kalman gain matrix, defined by

K(ti) = P(t−i )HT (ti)
[
H(ti)P(t−i )HT (ti) + R(ti)

]−1
(2.110)

After the update at time ti has been completed, the state estimate and covari-

ance are propagated to the next update time, ti+1, using the solution to the stochastic

differential equation previously derived:

x̂(t−i+1) = Φ(ti+1, ti)x̂(t+i+1) +

∫ ti+1

ti

Φ(ti+1, τ)B(τ)u(τ)dτ (2.111)

P̂(t−i+1) = Φ(ti+1, ti)P̂(t+i )ΦT (ti+1, ti)

+

∫ ti+1

ti

Φ(ti+1, τ)G(τ)Q(τ)GT (τ)Φ(ti+1, τ)T dτ (2.112)

The combination of the update and propagation equations define a recursive algorithm

which maintains an estimate of the state and the state uncertainty based on a system

dynamics model and incorporating measurements.

2.8.2 Extended Kalman Filter. The linear Kalman filter developed in the

previous section is based on a linear system model driven by white Gaussian noise.

While this is an appropriate description of many real-world systems, it is not ade-

quate for some problems [38]. These nonlinear problems motivate the development

of the extended Kalman filter (EKF). The development begins with a definition of a

nonlinear system model.
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The proposed nonlinear system model is defined as the following stochastic

differential equation driven by white Gaussian noise:

ẋ(t) = f [x(t),u(t), t] + Gw(t) (2.113)

Noise-corrupted, discrete measurements are available in the following form:

z(ti) = h [x(ti), ti] + v(ti) (2.114)

Perturbation techniques are used to approximate the system about a nominal

trajectory. This results in linear stochastic equations which can be solved using the

traditional linear Kalman filter propagation and update equations [38].

The derivation proceeds by defining a nominal trajectory and estimating the

errors about the nominal trajectory. Thus, the perturbation model for the state

vector is defined as the sum of a nominal trajectory and an error state:

x(t) = x̄(t) + δx(t) (2.115)

The nominal trajectory is defined as

˙̄x(t) = f [x̄(t),u(t), t] (2.116)

Applying the error modeling procedure presented in Section 2.4 yields the following

approximation to the nonlinear stochastic dynamics model:

˙̄x(t) + δẋ(t) = f [x̄(t),u(t), t] + F(t)δx(t) + Gw(t) (2.117)

which is the sum of the deterministic nominal trajectory (2.116) and a stochastic

linear differential equation

δẋ(t) = F(t)δx(t) + Gw(t) (2.118)
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The state estimate is defined as the sum of the nominal trajectory and the

estimated perturbation:

x̂(t) = x̄(t) + δx̂(t) (2.119)

The state error covariance is denoted by P(t).

To propagate from time t+i to t−i+1, the nominal trajectory is calculated using

a nonlinear differential equation solver [50], with the state estimate at t+i as the

initial condition. The covariance is propagated using the time propagation equations

presented in the previous section.

To incorporate the measurement update at ti+1, the nonlinear update Equa-

tion (2.114) is linearized about the nominal trajectory, x̂(t−i+1):

z(ti+1) = h
[
x̄(t−i+1), ti+1

]
+ H(ti+1)δx(ti+1) + v(ti+1) (2.120)

where H(t) is

H(t) =
∂h

∂x

∣∣∣∣
x̄(t),t

=




∂h1

∂x1
· · · ∂h1

∂xn

...
. . .

...

∂hn

∂x1
· · · ∂hn

∂xn




∣∣∣∣∣∣∣∣∣
x̄(t),t

(2.121)

Defining the measurement as the sum of a nominal and an error component

z(ti+1) = z̄(ti+1) + δz(ti+1) (2.122)

and subtracting the nominal component from (2.120) yields the perturbation update

equation:

δz(ti+1) = H(ti+1)δx(ti+1) + v(ti+1) (2.123)

The post-measurement error state vector, δx̂(t+i+1), and covariance, P(t+i+1), are

calculated using the Kalman update equations shown in the previous section.
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Finally, the current error state estimate is incorporated into the nominal tra-

jectory:

x̄(t+i+1) = x̄(t−i+1) + δx̂(t+i+1) (2.124)

the error state estimate is reset to zero and the process is repeated.

2.9 Optimal Batch Estimation

In this section, the method of optimal estimation using batch measurements is

presented, focusing on the problem of estimating parameters given nonlinear mathe-

matical models.

2.9.1 Linear Mathematical Models. The concept of optimal batch estima-

tion is introduced for the case where the observation function is well-modeled using

a set of linear stochastic functions. The linear problem is defined using the following

mathematical model [72]:

z = Hx + v (2.125)

where H is the design (or influence) matrix, x is the solution vector, z is the obser-

vation vector, and v is the residual vector.

The goal of the regression is to estimate the values of x̂ which, given H and

z, minimize the sum-of-squares of the estimated residual vector, weighted by the

uncertainty of the measurement error:

min
(
v̂R−1v̂T

)
(2.126)

where R is the measurement error covariance kernel

R = E
[
v̂v̂T

]
(2.127)
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where E [·] is the expected value operator. The resulting expression which minimizes

the sum-of-squares of the residual vector is shown to be [72]

x̂ =
(
HTR−1H

)−1
HTR−1z (2.128)

where the matrix
(
HTR−1H

)
is defined as the matrix of the normal equations. A

unique solution exists if and only if the matrix of normal equations is nonsingular.

In the next section, the optimal batch estimation concept is expanded to treat

nonlinear mathematical models.

2.9.2 Nonlinear Mathematical Models. In many cases, linear models are

inadequate for system modeling, and a nonlinear system model is required. This is

the situation for many systems, including image and inertial navigation solutions. A

general nonlinear model which is useful for working with imaging systems is defined

in [72] as

h (x, z) = 0 (2.129)

where h is a nonlinear system function, x is a vector of system parameters, and z is

a vector of (perfect) observations.

In order to estimate the unknown system parameter vectors, perturbation tech-

niques are employed. The model is linearized about nominal system parameter vectors

which are defined as

x = x + δx (2.130)

z = z + δz (2.131)

where x represents an initial approximation of the system parameters, and z is the

vector of (noise-corrupted) observations. Substituting equations (2.130) and (2.131)

into (2.129) yields

h (x + δx, z + δz) = 0 (2.132)
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Using perturbation techniques (see Section 2.4) Equation (2.132) is linearized about

the nominal state, resulting in the following first-order approximation (i.e., assuming

h is continuously differentiable in x and z):

h (x, z) + Hxδx + Hzδz ≈ 0 (2.133)

where

Hx =
∂h

∂x

∣∣∣∣
x,z

(2.134)

Hz =
∂h

∂z

∣∣∣∣
x,z

(2.135)

Given a vector of noise-corrupted observations and approximated system parameters,

the misclosure vector (w) is defined as

w = h (x, z) (2.136)

Substituting Equation (2.136) into (2.133) yields the linearized form of the re-

gression:

w + Hxδx + Hzδz ≈ 0 (2.137)

Assuming there is no prior information regarding the system parameters, the

estimated parameter error vector which minimizes the weighted sum-of-squared errors

is given by [72]

δ̂x = −
[
HT

x

(
HzRHT

z

)−1
Hx

]−1

HT
x

(
HzRHT

z

)−1
w (2.138)

where R is the measurement error covariance kernel, defined in the previous sec-

tion (2.9.1). The estimated measurement residual errors are given by

δ̂z = −RHT
z

(
HzRHT

z

)−1
(
Hxδ̂x + w

)
(2.139)
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Recalling equations (2.130) and (2.131), the estimated system parameters and

measurement residual errors are then added to their respective nominal parameter

vectors to produce the whole-valued state estimates:

x̂ = x + δ̂x (2.140)

ẑ = z + δ̂z (2.141)

In case where there is prior knowledge regarding the values of the system pa-

rameters, and this uncertainty is represented by the covariance kernel Pxx, defined

as

Pxx = E
[
δxδxT

]
(2.142)

the regression equation (2.138) is modified such that the prior knowledge is properly

weighted

δ̂x = −
[
P−1

xx + HT
x

(
HzRHT

z

)−1
Hx

]−1

HT
x

(
HzRHT

z

)−1
w (2.143)

For cases where the solution (x̂) converges slowly, the process can be repeated

using the whole-valued state estimate to calculate the partial derivatives. This iter-

ative technique can improve the accuracy of future estimates, however local conver-

gence is not guaranteed unless Lyapunov stability can be shown [45]. For a complete

discussion of least-squares techniques, see [72], [30], and [67].

2.10 Direction Cosine Perturbation Methods

In order to use perturbation methods, the calculation of partial derivatives is

required. While partial derivative calculations for vectors is straightforward, this is

not necessarily the case for direction cosine matrices. This issue is addressed by

representing small angles using a three dimensional vector. From [64], a direction
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cosine matrix can be approximated by

Ca
b = [I + θ×] (2.144)

where θ is a three-element vector of small angles.

Noting the multiplicative nature of direction cosine matrices allows the expres-

sion of any direction cosine matrix as the product of a direction cosine matrix and

a small rotation. For example, the arbitrary direction cosine matrix, Ca
c , can be

expressed as

Ca
c = [I + θ×]Cb

c (2.145)

This property is ideal for expressing small angular errors of the navigation system

based on an estimated direction cosine matrix of interest which simplifies the calcula-

tion of partial derivatives and reduces the number of states in the filter. This concept

is illustrated using an example.

A line of sight vector of interest, sc, is given by

sc = Cc
bC

b
n [yn − pn] (2.146)

The true body to navigation frame DCM can be expressed equivalently as the product

of a calculated body to navigation frame DCM and a small angular change due to

errors:

Cn
b = [I−ψ×]Cñ

b (2.147)

Substituting Eqn. (2.147) into (2.146) yields

sc = Cc
bC

b
ñ [I + ψ×] [yn − pn] (2.148)

Now calculation of the partial derivative of the attitude error vector, ψ, is straight-

forward:
∂sc

∂ψ
=

∂

∂ψ

(
Cc

bC
b
ñ (ψ×) [yn + pn]

)
(2.149)
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Rearranging the skew-symmetric form yields

∂sc

∂ψ
=

∂

∂ψ

(−Cc
bC

b
ñ ([yn − pn]×) ψ

)
(2.150)

∂sc

∂ψ
= −Cc

bC
b
ñ ([yn − pn]×) (2.151)

This partial derivative can now be used in an estimation algorithm. Once an

estimate of the small angle is available, ψ̂, the resulting estimate of the direction

cosine matrix is

Ĉn
b =

[
I− ψ̂×

]
Cñ

b (2.152)

In the next chapter, an analysis of the current state-of-the-art image-based

navigation techniques is presented.
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III. Navigation Using Imaging and Inertial Sensors - An

Analysis of the State of the Art

Navigation using images and inertial measurements is an area of active research.

This chapter describes the current state of the art and establishes a context for

this work.

3.1 Early Methods

The use of various types of optical measurements for navigation is not new.

In fact, some of the oldest navigation techniques are based on optical measurements

of fixed objects. In this section, the classic techniques of celestial navigation and

driftmeters are presented.

3.1.1 Celestial Navigation. The mathematical predictability and observ-

ability of the heavens provide an excellent source of navigation. Celestial navigation

is one of the oldest known methods for long-distance navigation and was practiced by

the world’s earliest global travelers, the Phoenicians and the Polynesians [10]. Early

navigators used the sky to determine direction by observing the stars rising in the

east, setting in the west and rotating about the north. Later, development of equip-

ment capable of measuring the angles between the horizon and stars (e.g., astrolabe,

sextant), combined with precision timekeeping, enabled navigators to determine lat-

itude and longitude directly [5]. In this section, the mathematics related to celestial

observations are developed.

In simplest terms, the celestial observation geometry is shown in Figure 3.1. The

celestial observation is a measurement of the angle from a star to the local vertical

vector. This angle describes a circular line of potential positions centered on the

projection of the star of the Earth’s surface. The location of the star is described by

the meridian angle and declination angle, λt and φt, respectively, from the inertial

reference frame. The location can also be described by the unit vector ťi.
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Figure 3.1: Celestial observation geometry. The celestial ob-
servation is a measurement of the angle from a star to the local
vertical vector. This angle describes a circular line of potential
positions centered on the projection of the star of the Earth’s
surface. The location of the star is described by the meridian
angle and declination angle, λt and φt, respectively, from the
inertial reference frame. The location can also be described by
the unit vector ťi.

59



The generalized location of a celestial body (e.g., star, planet, satellite, etc.)

can be expressed in the Earth-centered inertial, or i, frame as the vector ti. The

position vector can be expressed equivalently using a unit vector as

ti = Dťi (3.1)

where D = ‖ti‖. The line of sight vector to the object in the ECEF frame, se, is

se = DCe
i ť

i − pe (3.2)

where pe is the location of the sensor in the e frame. And in the camera frame

sc = DCc
eC

e
i ť

i −Cc
ep

e (3.3)

The line of sight vector is normalized to homogeneous coordinates by dividing by the

z component:

sc =
1

sc
z

sc (3.4)

and then transformed to pixel coordinates:

spix = Tpix
c sc (3.5)

where Tpix
c is the intrinsic camera projection matrix. Adding pixel measurement noise

defines a measurement equation of the form

zpix =


 spix

x

spix
y


 = h

(
pe,Ce

b, t
e,Tpix

c

)
+ v (3.6)

The measurement can be simplified by noting the distance to a star is much

greater than the radius of the Earth (e.g., pe/D ≈ 0.) Returning to Equation (3.2)
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and applying the infinite distance approximation, yields

se ≈ Ce
i ť

i (3.7)

which effectively removes pe from the measurement. The resulting simplified mea-

surement is

zpix =


 spix

x

spix
y


 = h

(
Ce

b, t
e,Tpix

c

)
+ v (3.8)

This shows celestial measurements are primarily useful for obtaining precise body ori-

entation. This orientation measurement can be combined with inertial measurements

to estimate position.

3.1.2 Driftmeter Navigation. Prior to the invention of the inertial navigation

system, the driftmeter was used by bomber crews in World War II to determine

groundspeed by tracking the apparent drift of objects on the ground [65]. Later, a

method using optical measurements of the lunar surface was suggested to provide

navigation information for the Apollo missions [39].

3.2 Non-inertial Optical Navigation Methods

Although this research is focused on the fusion of optical and inertial mea-

surements, a discussion of non-inertial optical navigation methods illustrates relevant

optical navigation techniques.

Hagen [17] proposes an extended Kalman filter for estimating an aircraft’s po-

sition and orientation using optical measurements and a known topographic map of

elevations. The algorithm uses feature detection techniques to select and track so-

called “tokens” from a video sequence. These tokens are defined as a collection of

circular integrals of pixel intensities:

ei(x, y) =

∫ 2π

0

I(x + ri cos α, y + ri sin α)dα (3.9)
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at various radii (ri) which are invariant to linear shifts and rotations. The candidate

tokens are then pruned to maximize a uniqueness measure which ensures the tokens

are not too closely spaced and the terrain around the token is linear. Both of these

constraints are designed to improve the stability of the extended Kalman filter.

The tokens are then tracked using a correlation algorithm which minimizes the

norm of the difference between the original token and the current image. Search

efficiency was improved by constraining the search area using the current navigation

state estimate and covariance.

A different approach to estimating position using aerial images is proposed by

Sim [55, 56] and generalized by Lerner [32]. The method begins by calculating a

number of correspondence vectors, arranged in a grid pattern, between a pair of

images. The resulting vector array is defined as the optical flow. The optical flow

array is then compared to a digital terrain model corresponding to the scene. This

results in two different, but complementary, updates. The average optical flow vector

is treated as a velocity measurement and integrated to estimate position. Because

the position is not measured directly, it is subject to drift over time. The second

measurement type correlates the optical flow pattern with the predicted optical flow

pattern calculated using the digital terrain model, similar to the Terrain Contour

Matching (TERCOM) technique for cruise missile guidance [14]. This measurement

provides a direct measurement of position relative to the Earth and serves to eliminate

long-term drift. The resulting navigation solution uses an ad hoc approach to integrate

the two measurements. The trajectory is then estimated using an iterative, nonlinear

solver.

The effects of sensor geometry for navigation and obstacle avoidance were stud-

ied in [23]. In this research, an autonomous helicopter was equipped with two side-

looking cameras and one omnidirectional video camera and flown through paths be-

tween tall buildings (i.e., urban canyons). The concept was motivated by the theorized

use of optical flow by insects for relative navigation and obstacle avoidance [59]. The
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vehicle was able to reliably determine the distance from each wall using the optical

flow measurement.

This is related to a developing field which is attempting to use biological vi-

sion research to navigate using optical flow. Interestingly, the insect compound eye

and tangential neuron structure has been shown to directly provide indications of

optical flow patterns tuned to specific elementary motions [8, 13, 31]. This discovery

has spawned a series of biomimetic or bio-inspired techniques for guidance and nav-

igation. In addition, the parallel-friendly nature of optic-flow processing has led to

the development of embedded very-large scale integration (VLSI) components with

imaging sensors with the goal of providing elementary motion estimates [19,21].

The advantages of incorporating a stereo imaging sensor for robot navigation

over uncertain terrain was investigated in [41,42]. The system modeled the locations

of landmarks as a Gaussian-distributed random variable and estimation algorithms

were developed using an optimal maximum-likelihood motion estimation model versus

the less-optimal least-squares formulation. Initial simulation results demonstrated

nonlinear error growth rate for optical-only navigation. Incorporating an attitude

sensor reduced the error growth significantly.

This research also showed innovation in the method used to select and track

features. The features were selected to maximize the Förstner interest operator [12]

with detail in the direction parallel to both cameras. This is equivalent to tracking

points which will provide the most accurate depth measurement. In addition, the

predicted feature location is constrained using an ad hoc method based on assuming

a relatively flat terrain model. Finally, the beneficial effects of tracking objects in

multiple images for stabilizing and improving long-distance navigation is noted.

Applying Bayesian methods to solve the correspondence between features in

multiple images was approached by Bedekar [2]. This maximum a posteriori (MAP)

estimator solves for the best correspondence estimate while accounting for random

camera errors and random feature location error. Let the vectors z1j, z2j, . . . , znj
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represent the observed feature locations for given feature, j, in image coordinates

from a sequence of images I1, I2, . . . , In, respectively. The true navigation state vector

for each image I1, I2, . . . , In is given by x1,x2, . . . ,xn, respectively. The estimated

navigation state vector x̂n is modeled as a Gaussian random vector with mean equal

to the true navigation state vector and covariance Pn. The true location of each

feature, j, in world coordinates is given for each epoch by q1j,q2j, . . . ,qmj.

The observed feature locations can now be expressed as a function of the true

location in world coordinates and the navigation state:

zij = P(xi,qj) + vij (3.10)

where P(·, ·) is the function which projects features into the image plane based on the

navigation state and vij is a random measurement noise. The triangulation problem

is solved by choosing q and x which maximizes the a posteriori probabilities:

p(qj|z1j, z2j, . . . , znj, x̂1, x̂2, . . . , x̂n) j = 1, 2, . . . , Mi (3.11)

over the various correspondence combinations between true feature locations and the

locations in the image.

This approach is important because it provides the basis for treating the navi-

gation state and the feature location measurements as random variables, resulting in

a navigation state estimate which is statistically rigorous. This concept could be ex-

tended into a stochastic process by incorporating a navigation state dynamics model

and additional measurements.

3.3 Inertially-aided Optical Navigation

In this section, relevant approaches for inertially-aided optical navigation are

described and analyzed.
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3.3.1 Bhanu, Roberts, and Ming. Integrating inertial measurements with a

digital image sequence to enhance object avoidance was proposed by Bhanu in [52]

and [4]. This system leverages inertial measurements to calculate the translation

and rotation between images to help solve the correspondence problem and estimate

object distance. While the method is not directly related to solving the navigation

problem, there are a number of similarities which motivate a discussion.

The algorithm consists of seven steps which are executed between pairs of images

taken at times ta and tb.

1. Calculate the navigation state, x̃(ta) and x̃(tb) corresponding to images, I(ta)

and I(tb), respectively.

2. Select interest points, z(ta) and z(tb), from each frame.

3. Locate the focus of expansion in each image.

4. Project the focus of expansion and interest points onto image plane parallel to

image a.

5. Match the interest points in frame b to frame a.

6. Compute the range to each interest point.

7. Create a dense map of range to obstacles.

The interest points (i.e., features) are calculated using a derivative of the Harris

feature detector with k parameter equal to zero (see Eqn. 2.95). The focus of expan-

sion is the projection of the position difference between times tb and ta onto the image

plane at time tb. This focus of expansion vector is the common vanishing point for

stationary objects due to translational camera motion.

The interest points in frame b are then “derotated” into an image plane parallel

to frame a using the change in attitude detected by the inertial sensor and the pro-

jection operator. This establishes an equivalent theoretical image space which results

from a purely translational motion. This, combined with the projection of the focus

of expansion, allows the algorithm to more easily establish correspondence between

65



interest points in both images. The derotation operation is expressed by the following

equation:

zca(tb) = Cca
n Cn

cb
zcb(tb) (3.12)

zca(tb) = Cca
cb
zcb(tb) (3.13)

where Cca
cb

is the DCM from camera frame at time ta to time tb, Cca
n is the DCM

from the navigation frame to the camera frame at time ta, Cn
cb

is the DCM from the

camera frame at time tb to the navigation frame, zcb(tb) and zca(tb) are the location of

interest points at time tb coordinitized in the cb and ca frames, respectively. The focus

of expansion, pcb
ab, is simply the rotation of the position difference between epochs ta

and tb into the camera frame at time tb

pcb
ab = Ccb

ca
pca

ab (3.14)

Once the image is derotated and the focus of expansion is established, the cor-

respondence between interest points is calculated using goodness-of-fit metrics. One

relevant metric is the correspondence search constraint placed on each point. This

constraint ensures each interest point lies in a cone-shaped region, with apex at the

focus of expansion, bisected by the line joining the focus of expansion and the interest

point in the camera frame at ta. While this constraint is not statistically rigorous, it

does show the value of using inertial measurements to aid the correspondence prob-

lem, which is an important contribution. The second contribution of this work is the

concept of applying transformations to the image based on inertial measurements to

produce a motion model which is more tractable. In this example, a purely transla-

tional model was preferred; however, other transformations are possible.

3.3.2 Roumeliotis, Johnson, and Montgomery. Another interesting proposal

for augmenting inertial navigation with image-based motion estimation is presented

in [53]. In this paper, the problem of landing an interplanetary probe on Mars is
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addressed. The approach combines measurements from an inertial sensor, image

sensor, and laser altimeter using an extended Kalman filter. What makes this work

unique is the direct exploitation of scene homography for use as updates to a filter.

In other words, based on an assumed relatively flat scene (e.g., looking down at the

ground during descent), the feature tracking algorithm can produce a measurement

of pitch and roll.

A comparison of homographic techniques is presented in [1], where a homogra-

phy is defined as a 3 × 3 matrix capable of describing the projective transformation

of points viewed on a plane between images. In order to compute a homography, a

minimum of four point correspondences from objects on a plane are required. As can

be expected, homographic methods work the best when the scene is well-modeled as

a plane; however, the method can be extended to arbitrary, but known, structures.

3.3.3 Pachter, Polat, and Porter. A theory for INS aiding by tracking a

ground object at unknown location is presented in [44, 46, 47]. In this approach, an

aircraft is equipped with a telescope with a gimbal mounting which enables the user

to measure angles and angular rates to a fixed ground target, similar to a modern

driftmeter [65].

For clarity, the initial derivation is performed using a two-dimensional profile.

Assuming a straight flight path with constant angle of attack, the location of the

unknown target and the aircraft velocity is estimated using measurements of the initial

deflection angle and angular rate from the driftmeter. Once these parameters are

estimated, the angle from the aircraft velocity vector to the initial line of sight (LOS)

to the target is calculated. Assuming a non-accelerating or rotating flight path, the

angle of attack can then be estimated directly from future angle measurements to the

target. Finally, this angle of attack measurement is used to estimate the navigation

state using inertial measurements and a weighted least squares formulation. This

illustrates a mathematical technique for estimating angle of attack and sideslip using

optical and inertial measurements for non-maneuvering flight.

67



3.3.4 Raquet and Giebner. Raquet proposes an extended Kalman filter

which combines optical measurements of an object at unknown location with inertial

and barometric altimeter measurements [51]. In the following paragraphs, an overview

of the filter derivation and the flight test results are presented.

The filter is a tightly-coupled, feed-forward design, error state model, commonly

used in inertial navigation systems [37]. A block diagram of the filter is shown in

Figure 3.2. As mentioned previously, the filter estimates the errors in the navigation

state produces by the INS. This perturbation model reduces the effects of unmodeled

super-linear dynamics and improves performance [37,38]. Thus, the state vector, δx̂,

which includes the inertial error states, can be defined as

δx̂ =




δpn

δvn

ψ

δhbaro

tn
1

...

tn
n




(3.15)

where δpn, δvn, and ψ are the position, velocity, and attitude errors, respectively.

The barometric altimeter error, δhbaro is modeled as a first-order Gauss-Markov pro-

cess [37]. The three dimensional target location estimates for n ground targets are

represented by tn
1 . . . tn

n. The targets are modeled as stationary (zero dynamics) with

a small additive random walk (process noise) to avoid filter lock-out caused by a

covariance eigenvalue approaching zero [37].

The state dynamics are a function of the INS error model and are expressed as

a stochastic linear differential equation:

δẋ = F
(
p̂n, Ĉn

b ,Fb
m,ωb

ibm

)
δx + G

(
Ĉn

b

)
w (3.16)
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Figure 3.2: Block diagram of feed-forward navigation Kalman
filter. The Kalman filter uses external measurements to estimate
the errors in the current navigation state produced by an inertial
navigation system (INS). The estimated errors are then removed
from the INS state resulting in a nearly optimal estimate.

which is a function of the current estimated trajectory and inertial measurements (see

Section 2.6.)

The optical measurement model describes the pointing vector from the aircraft

to the each target as a function of the current state. The measurement equation for

target n is expressed as

zn =


 αn

βn


 = hn(x) + v (3.17)

where αn and βn are the horizontal and vertical angles to target n. The x vector is

the true navigation state. Using the method of perturbations, the measurement is

linearized about the estimated aircraft state:

δzn = Hnδx + v (3.18)

where Hn is the Jacobian of the nonlinear measurement function, hn [·], about the

current state estimate. Note that the elements of the H matrix related to orientation

error are not modeled in this implementation.

The linearized dynamics and measurement update equations were incorporated

into an extended Kalman filter and tested using flight test data. The test trajec-

tory was a circular pattern, approximately three kilometers above four fixed targets,
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chosen to keep the targets in the camera field of view. The pixel location to each

target was measured by hand and converted to angular measurements for process-

ing. Incorporating optical measurements improved the navigation position error by

74 percent over the free inertial solution. This demonstration showed the benefits

of incorporating optical measurements of objects at unknown locations with inertial

sensors.

3.3.5 Strelow, Singh, and Adams. Strelow [60–62] approaches the problem

of integrating optical and inertial sensors using optimal online and batch techniques.

Optimal online processing estimates the current navigation state conditioned on all

prior measurements, using a some statistical measure of optimality. Note that the def-

inition of optimality is dependent on the actual measure chosen. As the name implies,

online methods can theoretically be used to estimate the navigation state in real-time,

onboard some vehicle. Conversely, batch processing involves estimating an optimal

trajectory, conditioned on all measurements for the entire trajectory. Batch methods

typically have improved performance over online methods, especially in highly non-

linear situations such as correspondence solutions, and can serve to define the best

achievable performance for a given trajectory and measurement realization [60].

The online algorithm described in [61] integrates inertial and optical measure-

ments using an extended Kalman filter algorithm. Using notation consistent with the
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development in Chapter II, the state vector for n tracked targets, x(t), is

x(t) =




pe(t)

ve(t)

v̇e(t)

φ(t)

ωb
eb(t)

ab0

bb0

gb0

te
1

...

te
n




(3.19)

where pe, ve, and v̇e are the position, velocity, and acceleration vectors; φ is a

vector of Euler angles from the world frame to the body frame; ωb
eb(t) is the angular

velocity vector; ab0 , bb0 , and gb0 are the accelerometer bias, gyro bias and gravity

vectors with respect to the body coordinate frame at t = 0, respectively. Finally, the

target locations in the world frame are expressed by the vectors, te
1, . . . , t

e
n. The state

estimate and covariance is propagated using the extended Kalman filter algorithm

presented in Section 2.8.2.

The image measurements utilizes the pixel location measurement for each target

in the image, zn(ti), which is expressed as the projection of the relative Euclidian

target location into the image plane:

zn(ti) =


 xpix(ti, n)

ypix(ti, n)


 = π [Cc

e(ti)s
e
n(ti)] (3.20)

where π is the projection operator, xpix and ypix is the target location in pixels,

and Cc
e(ti) is the DCM from the ECEF to the camera frame at time ti. The three
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dimensional target line of sight vector, se
n(ti) is defined as

se
n(ti) = te

n − pe(ti) (3.21)

In this derivation, note that the camera frame is aligned with the body frame, (i.e.,

Cc
b = I.)

In addition, the accelerometer and gyroscope measurements, za(ti) and zb(ti),

respectively, are incorporated as independent measurements using the measurement

equations:

za = Cb
ev̇

e −Cb
b0

[
gb0 + ab0

]
+ va (3.22)

zb = ωb
eb − bb + vb (3.23)

where va and va are additive random noise vectors.

The filter is initialized using a short initial measurement sequence and a batch

algorithm to estimate visible features. Features which become visible after the filter

is initialized are incorporated using a stochastic map approach, described in [58], if

certain criteria are met.

The candidate target must first be tracked through a small, predetermined num-

ber of frames in order to provide an initial estimate for the three-dimensional location,

t̂n, and to indicate some level of stability in the track. Once a three dimensional so-

lution is available for a candidate target, a quality measure is calculated based upon

the following heuristic. Let l describe the length of the longest axis of the covariance

matrix, Ptt, associated with the candidate target. The ratio r = l/b is calculated,

where b is the longest baseline between camera centers used to calculate the initial

target location. If r is less than a fixed threshold, the target state is added to the

filter using the state augmentation procedure described in the next paragraph. Note

that the r heuristic is a measure of the “goodness” of the geometry described by the

trajectory and target location.
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The new target is added to the current state vector. The state covariance matrix

is augmented using

Pe
tt = GxPxxG

T
x + GtP

b
ttG

T
t (3.24)

Pe
xt = GxPxx (3.25)

where Pxx is the current filter covariance. Gt and Gx are the Jacobians of the

transformation from body (camera) to ECEF frame:

Gt =
∂Ce

b

∂t

∣∣∣∣
x=x̂,t=t̂n

(3.26)

Gx =
∂Ce

b

∂x

∣∣∣∣
x=x̂,t=t̂n

(3.27)

According to the authors, this method accounts for noise in the image observations and

state estimate, but does not account for any relative error between the recent state

estimates. Cases where this error is significant (e.g., point feature correspondence

errors) are recommended for future research.

The batch algorithm uses the Levenberg-Marquardt method [50] to minimize

a nonlinear cost function representing the total error of the current trajectory. The

overall cost function is the sum of the visual and inertial errors:

Ecombined = Evisual + Einertial (3.28)

The visual error term, Evisual, is an expression of the image reprojection error

Evisual =
∑
i,j

D
(
πpix

c

[
Cc

e(ti)t
e
j

]
, spix

ij

)
(3.29)

where spix
ij is the observed pixel location of target j at time ti, te

j is the location of

target j in the ECEF coordinate frame, Cc
e(ti) is the transformation from the world
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to camera frame at time ti, and πpix
c [·] is the image projection function. D (·) is a

Mahalanobis (weighted two-norm) distance function.

The inertial error term, Einertial, is an expression of the errors in the position,

velocity, and attitude vectors:

Einertial =
n∑

i=1

D [pe(ti),p
e
intertial(ti)|pe

inertial(ti−1)]

+
n∑

i=1

D [ve(ti),v
e
intertial(ti)|ve

inertial(ti−1)]

+
n∑

i=1

D [ψ(ti), ψintertial(ti)|ψinertial(ti−1)] (3.30)

where pe
intertial(ti)|pe

inertial(ti−1) is the inertial position solution at ti integrated from

the inertial position solution at ti−1, v
e
intertial(ti)|ve

inertial(ti−1) is the inertial velocity so-

lution at ti integrated from the inertial velocity solution at ti−1, and ψintertial(ti)|ψinertial(ti−1)

is the inertial attitude solution (expressed in Euler angles) at ti integrated from the

inertial attitude solution at ti−1. pe(ti), ve(ti), and ψ(ti) are the camera position,

velocity, and attitude at time ti. The distance function, D(·), is also a Mahalanobis

distance function.

The online and batch algorithms are then tested using a calibrated camera and

inertial sensor mounted on a robotic arm. The sensor is subjected to a four degree-

of-freedom trajectory, resembling a clover pattern. The tests are performed using a

combination of methods:

• Batch processing using image and inertial measurements.

• Online processing using 15, 30, and 45 images for initialization

• Batch processing using images only.

The results show the value of adding inertial measurements to vision processing.

The performance of the image-only batch algorithm is unable to converge on a realistic

solution under the test conditions. Combining image and inertial measurements using
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batch processing results in the best performance. The online algorithms combining

inertial and visual measurements perform much better than the visual only, and show

improved performance with increased batch initialization size.

In addition to the batch and online processing methods, Strelow also proposes

incorporating inertial measurements to constrain the correspondence search between

image frames [62]. This constraint on the image search space is a similar concept to

the field of expansion method proposed by Bhanu [4]; however, Strelow generalizes

the approach by exploiting epipolar geometry.

The projection of an arbitrary point in an image is described by an epipolar

line in a second image (see Figure 3.3.) All epipolar lines in an image converge at

the projection of the focus of the complimentary image. Combining knowledge of the

translation and rotation between images and the pixel location of a candidate target

in the first image, a correspondence search is then constrained to an area near the

epipolar line. This approach is shown in Figure 3.4.

There are some limitations in Strelow’s work which warrant further research.

First, while he develops an initial concept of using inertial measurements to constrain

the correspondence search along an epipolar line, it is ad hoc in the sense that is not

a stochastically rigorous development. In addition, the planar correspondence search

constraints needs to be expanded to multiple dimensions when incorporating higher

dimensional features. Another limitation of Strelow’s work is the limited applicability

to an airborne environment, since his experiments are restricted to captive robot arms

and land-based robots with very limited range. An airborne platform is expected to

navigate over a relative large area, without visual overlap, for a period of hours.

Finally, he does not exploit a priori world and scene information, which could be of

significant value to an operationally useful navigation system.

In the next chapter, image and inertial navigation algorithms are proposed which

address the shortcomings identified in the previous sections.
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Figure 3.3: Epipolar geometry between two images. The pro-
jection of an arbitrary point in an image is described by an
epipolar line in a second image. All epipolar lines in an image
converge at the projection of the focus of the complimentary
image.
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Figure 3.4: Correspondence search constraint using epipolar
lines. Given a projection of an arbitrary point in an initial image,
combined with knowledge of the translation and rotation to a
second image, the correspondence search can be constrained to
an area near the epipolar line. Note the epipole can be located
outside of the image plane, as shown in this example.
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IV. Image and Inertial Fusion Navigation Algorithm

This chapter presents an innovative approach for rigorously integrating imaging

and inertial sensors at a deeper level than the current state-of-the-art. The chap-

ter is organized as follows. First, the image and inertial fusion problem is presented

and explained through a series of fundamental concepts. Next, these concepts are

developed using rigorous mathematical techniques. These mathematical techniques

are then incorporated into an extended Kalman filter algorithm used to implement

the image and inertial fusion algorithm for online navigation. Finally, a discussion

of tracking maintenance and various potential image measurements which can be

exploited to improve the navigation solution are presented.

4.1 Proposed Image and Inertial Fusion Algorithm Walkthrough

In this section, the fundamental steps of the image and inertial fusion for navi-

gation problem are presented in order to provide a conceptual reference for the forth-

coming detailed development. The concept is based on the following assumptions:

• A strapdown inertial sensor is available, and rigidly mounted relative to one, or

multiple digital cameras.

• The digital camera(s) capture images at some interval. The time of image

capture is known relative to the inertial measurements.

• An initial navigation state with known accuracy statistics is available.

• An estimate of the distance to objects in the scene is available either through ex-

ploitation of knowledge of the world (e.g., terrain models) or through binocular

stereopsis.

Based on the above assumptions, an example navigation trajectory is shown in Fig-

ure 4.1.
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Figure 4.1: Overview of image-aided inertial algorithm.
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The algorithm consists of the following fundamental steps:

• Image capture

• Transformation from image to feature space

• Propagation of navigation state to next image event

• Feature space propagation to next image event

• Statistical feature correspondence

• Trajectory error estimation

As presented in Chapter II, the digital imaging device measures the light in-

tensity pattern projected through optics onto a sensor. The projection is a nonlinear

function of the scene and lighting conditions, the camera optics, and the pose of the

camera relative to the scene. The measured image can be thought of as a surface in

three dimensions (two spatial and one intensity) which is corrupted by measurement

noise, optical distortions, and possibly spatial aliasing.

While camera images are easily interpreted by humans, a transformation of the

image to a space which more directly supports the automated navigation algorithm

is desired. This space is termed the feature space. In general terms, the feature space

transformation transforms the image array into a collection of feature vectors , located

in the feature space. Many potential feature transformations have been proposed

(see Section 2.7.4). The most desirable feature space transformation for exploiting

image navigation information decomposes the feature space into separable pose and

object dimensions. An ideal set of pose dimensions would be completely dependent

on the relative pose of the object, but independent on the type of object or feature.

Conversely, the ideal set of object dimensions would be completely independent of

the relative pose of the object, and only depend on the type of object. This is

similar to human interpretation of objects. For example, a pencil always looks like

a pencil, no matter what orientation or size it appears to our eyes. Although no

algorithm is currently known which can achieve true independence between the pose
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and object bases, feature transformation algorithms have been proposed which display

scale and rotation independence. The details of the feature transformation algorithm

investigated during this work are discussed in the next section.

Once a collection of features is calculated for the current image, inertial mea-

surements are integrated so that the relative change in pose can be estimated when

the next image is captured. As described in Section 2.5.3, the calculated navigation

state vector can be expressed as nonlinear differential equations which are functions

of the accelerometer and gyroscope measurements, initial conditions, gravity vector,

and Earth rotation rate vector. In addition to estimating the mean of the navigation

state, the navigation state uncertainty covariance is propagated using the navigation

error model and the Kalman filter propagation relations shown in Section 2.6.1 and

2.8, respectively.

The estimated changes in the navigation state are then used to predict the loca-

tion of features through a stochastic projection transformation. This transformation

operates on the pose dimensions of each feature vector from the previous image and

results in an estimated pose and pose uncertainty at the time of the next image. The

concept is illustrated in Figure 4.2. This predicted collection of feature vectors can

then be compared to the features detected in the current image. This comparison

consists of matching feature vectors from one epoch to the next by comparing the

respective feature vectors using a rigorous, statistical weighting. This rigorous sta-

tistical feature matching based on inertial measurements integrates the image and

inertial sensors at a deeper level than previous methods and is a significant contribu-

tion of this research. The statistical matching is described in detail in Section 4.2.

Once feature matches are determined, the errors between the predicted feature

location and the actual feature location are used to correct errors in the navigation

state. This is accomplished using the Kalman filter update equations described in

Section 2.8 and discussed for this specific implementation in Section 4.2.
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The cycle is then repeated for each image captured. In the next section, a

detailed discussion of the components of the image and inertial fusion algorithm is

presented.

4.2 Detailed Discussion of Image and Inertial Fusion Algorithm

In this section, the components of the image and inertial fusion algorithm are

presented in more mathematical detail in order to illustrate the general feature trans-

formation concepts presented in Section 4.1.

4.2.1 Stochastic Feature Transformation. As mentioned in the previous

section, the transformation of a captured image into feature space is an important

step toward extracting navigation information. For this work, this is accomplished

using a variant of the scale-invariant feature tracking (SIFT) algorithm developed

by Lowe [33]. While the SIFT algorithm is not a contribution of this research, it is

presented in this section for clarity as it is the starting point for much of the research

that follows. The SIFT feature transformation algorithm produces feature vectors

with pose and object dimensions which are decoupled in translation, scale, and rota-

tion and partially decoupled in affine (warping) motions. These characteristics make

this algorithm attractive for navigation estimation, since the stochastic projection can

be applied to the pose dimensions with only small effects on the object dimensions.

The feature transformation consists of three components: scale-space decom-

position, feature detection, and calculation of the feature description vector. The

scale-space decomposition is calculated using Gaussian and Gaussian difference spa-

tial filters [34]. A Gaussian spatial filter or “Gaussian blur” is defined as the following

function:

g(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (4.1)

where x and y correspond to the spatial dimensions of the image in pixels and σ is

the standard deviation of the blurring function. Thus, given an image, i(x, y), the
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filtered image can be represented by a convolution in x and y:

l(x, y, σ) = i(x, y)⊗ g(x, y, σ) (4.2)

The above function can also be written equivalently as a multiplication in the spatial

frequency domain:

L(fx, fy, σ) = I(fx, fy)G(fx, fy, σ) (4.3)

where I(fx, fy) is the two-dimensional Fourier transform of the image and G(fx, fy, σ)

is the two-dimensional Fourier transform of the Gaussian blur function. For illustra-

tive purposes, the spatial frequency response of the one-dimensional Gaussian blur

function is shown in Figure 4.3. Note the cutoff frequency of the Gaussian function

decreases as the standard deviation, σ, increases.

The difference of Gaussian filter is defined as:

f(x, y, k, σ) = g(x, y, kσ)− g(x, y, σ) (4.4)

where x and y correspond to the spatial dimensions of the image in pixels, k > 1

is the scaling frequency step constant, and σ is the base standard deviation. Thus,

given an image, i(x, y), the filtered image can be represented by a convolution in x

and y:

d(x, y, k, σ) = i(x, y)⊗ f(x, y, k, σ) (4.5)

Sample impulse responses of the difference of Gaussian filter are shown in Figure 4.4.

The difference of Gaussian function can also be written equivalently as a multiplication

in the spatial frequency domain:

D(fx, fy, k, σ) = I(fx, fy)F(fx, fy, k, σ) (4.6)
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Figure 4.2: Stochastic feature projection. Optical features of interest are mapped
into future images using inertial measurements and stochastic projections.
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Figure 4.3: Frequency response of the Gaussian blur filter for varying blurring
function standard deviations (σ). The cutoff frequency of the Gaussian function
decreases as the standard deviation, σ, increases. Only one dimension of the function
is shown for clarity.

84



−15 −10 −5 0 5 10 15
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Spatial Distance (pixels)

D
iff

er
en

ce
 o

f G
au

ss
ia

n,
 g

(k
i+

1 σ 0)−
g(

ki σ 0),
 σ

0 =
 0

.5
5,

 k
 =

 2
1/

2

i = 0 

i = 1 
i = 2 

i = 3 
i = 4 

i = 5 i = 6 i = 7

Figure 4.4: Impulse response of the difference of Gaussian filter.
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Figure 4.5: Frequency response of the difference of Gaussian filter. The center
frequency of the bandpass response is a function of the standard deviation values of
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Figure 4.6: Sample image of airfield.

The spatial frequency response of the one-dimensional difference of Gaussian filter is

shown in Figure 4.5. The spatial bandpass nature of the difference of Gaussian filter

passes intensity variations in the image of a specific frequency, or scale.

By varying the scale parameter, k > 1, the image can be decomposed into

multiple scale spaces, each of which is centered on a specific spatial frequency. In [34],

the scale parameter is varied geometrically to maintain equal frequency spacing per

octave of spatial frequency. Given an initial Gaussian filter standard deviation, σ0,

and spacing parameter, k, the i th difference of Gaussian filter is defined as

f(x, y, i) = g(x, y, ki+1σ0)− g(x, y, kiσ0) (4.7)

A scale decomposition of a reference image (Figure 4.6) is shown in Figure 4.7.

Note as the center frequency of the difference of Gaussian filter increases (with de-

creasing i), the filtered images show an increased sensitivity to higher spatial frequency

detail.
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Figure 4.7: Sample image scale decomposition. As the filter center frequency in-
creases (with decreasing i), the filtered images show increased sensitivity to higher
spatial frequency detail.
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After the image is decomposed into scale space, features are then detected which

exhibit some local distinctiveness. This is accomplished by locating a voxel (i.e.,

volume element) which is the local maxima or minima of the 26 adjacent voxels in

x, y, and scale (i). Once a candidate feature is located in a particular scale space,

the amount of spatial detail is found by calculating the eigenvalues of the following

matrix over a window, W, which is centered on the candidate feature:

G =




∑
x,y∈W(∇fx)

2
∑

x,y∈W∇fx∇fy
∑

x,y∈W∇fx∇fy
∑

x,y∈W(∇fy)
2


 (4.8)

where ∇fx and ∇fy are the gradients of the scale space image f(x, y, i) in the x and

y directions, respectively. As mentioned previously in Section 2.7.4, a zero eigenvalue

corresponds to zero detail in the direction of the eigenvector, which results from a

constant intensity image. The eigenvalues increase with increasing detail, indicating

a potentially distinct feature. Features are declared by thresholding the eigenvalues

and choosing the strongest candidates, which is refined using the Harris metric [18],

which was introduced in Equation (2.95), and repeated here for clarity:

C(G) = det(G) + kt

[
trace2(G)

]
(4.9)

which is equivalent to

C(G) = (1 + 2kt)σ1σ2 + kt(σ
2
1 + σ2

2) (4.10)

where σ1 and σ2 are the eigenvalues of G, and kt is a tuning parameter. Smaller values

of kt favor detail in both directions, while larger values of kt are more accepting of

detail in only one direction [18].

Once features are selected which have sufficient detail in multiple directions, the

object dimensions of the feature vector are calculated as a function of the intensity

gradient of the filtered scale space near the feature. The method presented by Lowe
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builds a histogram of gradient orientations around the feature, then selects a primary

orientation of gradient vector which corresponds to the maximum histogram bin.

The object dimensions of the feature vector are then composed of the normalized

histograms of gradient around the feature. For more information of the SIFT feature

transformation algorithm, see [33], [34] and [27].

Thus, an image at time ti is transformed to a collection of M vectors in feature

space:

i(x, y, ti) −→ z∗n(ti) ∀n ∈ {1, 2, . . . , M} (4.11)

where, for the SIFT feature transformation algorithm, z∗n(ti) is partitioned into pose

and object subspaces:

z∗n(ti) =




zpose
n (ti)4×1

−
zobject

n (ti)128×1




132×1

(4.12)

where

zpose
n (ti) =




znx(ti)

zny(ti)

σn(ti)

θn(ti)




4×1

(4.13)

where znx and zny are the pixel location in the image, σn is the scale of the feature,

and θn is the primary orientation of the feature.

In the next section, the statistical predictive transformation of the feature vec-

tors to a future time is presented.
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4.2.2 Statistical Predictive Transformation of Feature Space. The theory is

divided into three sections: estimating the initial landmark position and covariance

based on the feature vectors calculated from the first image, using inertial measure-

ments to propagate this augmented state to the time of the second image, and pro-

jecting this landmark position state onto the second image as a probability density

function in feature space. In simpler terms, these equations allow the filter to pre-

dict where a stationary feature should appear in subsequent images, thus providing

a statistical measure to constrain the search space within the image. This projection

theory is novel and provides the framework for efficient and robust image and inertial

integration.

4.2.2.1 Landmark Error Statistics. As described in Section 2.7, the

image produced by an imaging sensor is a projection of the scene onto the imaging

array. Thus each location on the imaging array corresponds to a three dimensional

position in the scene. Each scene location corresponding to the pixel location of a

feature is defined as a landmark. The landmark position corresponding to a pixel

location is a nonlinear function of the navigation state, pixel location measurements

from the feature vector, z(ti), slant distance from the camera to the landmark, d(ti),

camera to body direction cosine matrix, Cb
c, and homogeneous camera projection

matrix, Tpix
c (see Section 2.7.1 for a description):

yn = g
(
pn(ti),C

n
b (ti), z(ti), d(ti),C

b
c,T

pix
c

)
(4.14)

The pixel location measurement at time ti is a nonlinear function of the navigation

state, landmark position, and camera parameters (defined in Section 2.7):

z̃(ti) = h(pn(ti),C
n
b (ti),y

n(ti),C
b
c,T

pix
c ) + v(ti) (4.15)
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where v(ti) is a zero-mean, additive white Gaussian noise process with

E[v(ti)v(tj)] =





R(ti) ti = tj

0 ti 6= tj
(4.16)

The slant distance from the camera optical center to the terrain, d(ti), is not

directly available from a single feature measurement and must be determined using

additional information. The methods include exploiting a model of the terrain, esti-

mating distance using binocular vision, and leveraging egomotion between multiple

monocular images. The influence matrices must be carefully calculated in order to

properly represent the contribution of the distance uncertainty, which may be highly

dependent on the navigation state and measurement errors themselves. A detailed

treatment of the potential cases and their effects on the distance uncertainty is pre-

sented in Section 4.3.3. The most general case, where d(ti) is a function of the

navigation state, the pixel location, and some terrain model (h):

d(ti) = d(pn(ti),C
n
b (ti), z(ti), h) (4.17)

is assumed for the current development of the stochastic error projection equations.

Simplifications of the general solution can then be used to describe situations where

d(ti) is not a function of the navigation state (e.g., binocular range estimation).

Similarly to the navigation state, the calculated landmark position, ỹn, is also

modeled as a perturbation about the true position:

ỹn = yn + δyn (4.18)

and is a function of the calculated trajectory:

ỹn = g
(
p̃n(ti), C̃

n
b (ti), z̃(ti), d̃(ti),C

b
c,T

pix
c

)
(4.19)
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Applying perturbation techniques to the landmark position function, the landmark

error, δyn, can be expressed as a linear function of the errors of the navigation state

(δx), pixel measurement model (v(ti)), and terrain model uncertainty (δh):

δyn = Gyxδx + Gyhδh + Gyzv(ti) (4.20)

where the influence coefficients are given by

Gyx =
∂g

∂x

∣∣∣∣
x̃,z̃(ti),d̃(ti),Cb

c,Tpix
c

(4.21)

Gyh =
∂g

∂h

∣∣∣∣
x̃,z̃(ti),d̃(ti),Cb

c,Tpix
c

(4.22)

Gyz =
∂g

∂z

∣∣∣∣
x̃,z̃(ti),d̃(ti),Cb

c,Tpix
c

(4.23)

and

δd = d̃− d (4.24)

Using the linearized position measurement, the landmark error is a zero-mean,

Gaussian random vector. The landmark error covariance, Pyy(ti), and cross-correlation

matrix, Pyx(ti) are defined as

Pyy(ti) = E[δyδyT ] (4.25)

Pyx(ti) = E[δyδxT ] (4.26)

Substituting (4.20) into (4.25), and noting the independence between navigation state

and pixel measurement errors yields

Pyy(ti) = GyxE[δxδxT ]GT
yx

+GyhE[δh2]GT
yh

+GyzE[v(ti)v
T (ti)]G

T
yz (4.27)
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Substituting the previously defined covariance matrices for the navigation errors, ter-

rain, and pixel measurement yields the final form of the landmark position error

covariance:

Pyy(ti) = GyxPxx(ti)G
T
yx

+Gyhσ
2
hG

T
yh + GyzRGT

yz (4.28)

The cross-correlation matrices are calculated in a similar manner:

Pxy(ti) = Pxx(ti)G
T
yx (4.29)

Pyx(ti) = GyxPxx(ti) (4.30)

Note that Pxx(ti) is the covariance matrix of the navigation state error, and is provided

by the Kalman filter.

4.2.2.2 State Propagation. In this section, the nominal navigation

state, navigation error state, and landmark error states are propagated from time ti

to ti+1.

The nominal aircraft navigation state is propagated forward based on the non-

linear dynamics model given in Section 2.6, typically using a nonlinear differential

equation solver (e.g., Euler, Trapezoidal, or Runge-Kutta) [50].

The landmark error dynamics are defined as a random walk:

δẏn = Gywy(t) (4.31)

where Gy is the dynamics influence matrix and wy(t) is a zero-mean, white Gaussian

noise process with covariance kernel

E[wy(t)w
T
y (t + τ)] = Qyδ(τ) (4.32)
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As mentioned in Section 3.3.4, while the landmarks are assumed to be stationary

(zero-dynamics), a small additive random walk is added to compensate for the effects

of bias initialization errors and to prevent covariance eigenvalues from approaching

zero [37].

The general navigation error stochastic differential equation is defined in Sec-

tion 2.6.4 as

δẋ(t) = F(t)δx(t) + Gx[x̃
n(t), t]wx(t) (4.33)

The navigation and landmark error covariance propagation dynamics are derived

using the linearized dynamics models given in Section 2.6.4:

Ṗxx(t) = F(t)Pxx(t) + Pxx(t)F
T (t)

+Gx(t)Qx(t)G
T
x (t) (4.34)

Ṗxy(t) = F(t)Pxy(t) (4.35)

Ṗyy(t) = GyQyG
T
y (4.36)

An equivalent expression for the time propagation is represented by the state

transition matrix, Φ(ti+1, ti), which projects the navigation and landmark error co-

variance from time ti to ti+1 [37]. The resulting expression for the navigation and

landmark error covariance is:

Pxx(ti+1) = Φ(ti+1, ti)Pxx(ti)Φ
T (ti+1, ti)

+

∫ ti+1

ti

Φ(ti+1, τ)GxQxG
T
x ΦT (ti+1, τ)dτ (4.37)

Pxy(ti+1) = Φ(ti+1, ti)Pxy(ti) (4.38)

Pyy(ti+1) = Pyy(ti) + (ti+1 − ti)GyQyG
T
y (4.39)

4.2.2.3 Projection of Uncertainty Statistics onto Image. The pixel

projection function is used to project the navigation state and landmark location into
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the feature space at time ti+1. The pixel projection is

z(ti+1) = h(pn(ti+1),C
n
b (ti+1),y

n(ti+1),C
b
c,T

pix
c ) (4.40)

The estimated pixel location error, δz(ti+1), is modeled as a perturbation about the

nominal pixel location:

δz(ti+1) = ẑ(ti+1)− z(ti+1) (4.41)

where the estimated pixel location, ẑ(ti+1), is calculated using the nominal navigation

state and landmark position:

ẑ(ti+1) = h(p̃n(ti+1), C̃
n
b (ti+1), ỹ

n(ti+1),C
b
c,T

pix
c ). (4.42)

Perturbing the pixel projection function, the pixel location error can be ex-

pressed as a linear function of the errors of the navigation state and landmark posi-

tion:

δz(ti+1) = Hzxδx(ti+1) + Hzyδy(ti+1) (4.43)

where

Hzx =
∂h

∂x

∣∣∣∣
x̃,ỹ,Cb

c,Tpix
c

(4.44)

Hzy =
∂h

∂t

∣∣∣∣
x̃,ỹ,Cb

c,Tpix
c

(4.45)

The pixel error covariance, Pzz(ti+1), is defined as

Pzz(ti+1) = E[δz(ti+1)δz
T (ti+1)] (4.46)
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Substituting (4.43) into (4.46), and eliminating independent error sources yields the

pixel location covariance:

Pzz(ti+1) = HzxPxx(ti+1)H
T
zx

+HzxPxy(ti+1)H
T
zy

+HzyP
T
xy(ti+1)H

T
zx

+HzyPyy(ti+1)H
T
zy (4.47)

Finally, the covariance of the pixel location errors can be summarized by com-

bining the equations presented in the previous sections:

Pzz(ti+1) = HzxΦ(ti+1, ti)Pxx(ti)Φ
T (ti+1, ti)H

T
zx

+Hzx

∫ ti+1

ti

Φ(ti+1, τ)GxQxG
T
x ΦT (ti+1, τ)dτHT

zx

+HzxΦ(ti+1, ti)Pxx(ti)G
T
yxH

T
zy

+HzyGyxPxx(ti)Φ
T (ti+1, ti)H

T
zx

+HzyGyxPxx(ti)G
T
yxH

T
zy

+HzyGyhσ
2
hG

T
yhH

T
zy

+HzyGyzRGT
yzH

T
zy

+(ti+1 − ti)HzyGyQyG
T
y HT

zy (4.48)

This equation shows how an initial navigation state error covariance, Pxx(ti), height

uncertainty variance, σ2
h, measurement noise (characterized by R), and process noise

(characterized by Qx and Qy) can be rigorously projected to the feature space at a

later time, ti+1, as expressed by Pzz(ti+1).

In summary, given the pixel coordinates of a stationary ground landmark at time

ti, the predicted pixel coordinates of the same landmark at time ti+1 can be described

by the bivariate Gaussian probability density function given in Equation (4.48). Thus,

the correspondence search for the landmark can be constrained using a rigorous sta-

96



tistical confidence threshold (as opposed to approaches proposed in other research

which are ad hoc). In the following section, the stochastic projection method is used

to predict the location (and uncertainty) of a stationary landmark in an image.

4.2.3 Statistical Feature Matching. In the previous section, feature vectors

from the image captured at time ti are propagated stochastically to the next image

capture time, ti+1. After the image is captured at ti+1, and the image is transformed

into a collection of features, the next step is to determine the correspondence between

the predicted feature set and the measured feature set at ti+1. A statistically rigorous

solution to this correspondence problem is presented in this section. This generalized

solution, based on rigorous statistics of the navigation state, is an extension of the

statistical projection theory presented in the previous section and is an additional

contribution which results in a novel correspondence technique which is robust and

efficient.

In general, determining the potential correspondence between a given feature

vector predicted from an earlier image and the collection of feature vectors implies

defining a metric which measures the quality of match. In this dissertation, the

quality metric uses a statistical weighting of the difference between the predicted and

candidate feature vectors, which is also known as the Mahalanobis distance. The

Mahalanobis distance from the predicted feature vector, ẑ∗(ti+1), to the measured

feature vector, z∗n(ti+1), is defined as the weighted inner product:

Dn(ti+1) = [z∗n(ti+1)− ẑ∗(ti+1)]
TPz∗z∗(ti+1)[z

∗
n(ti+1)− ẑ∗(ti+1)] (4.49)

where Pz∗z∗ is the covariance of the predicted feature vector. As mentioned previously

in Section 4.2.1, the feature vector covariance consists of strongly independent pose

and object descriptor dimensions. Assuming the independence of scale and rotation
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on the pixel location, the covariance matrix can be written in a block-diagonal form:

Pz∗z∗(ti+1) =




Pzz(ti+1) 0 0 0

0 Pσσ 0 0

0 0 Pθθ 0

0 0 0 Pzdzd




(4.50)

where Pzz represented the pixel location uncertainty covariance, Pσσ represents the

scale uncertainty covariance, Pθθ is the rotation uncertainty covariance, and Pzdzd
is

the uncertainty covariance of the descriptor. Thus, the associated covariances of the

features serve to weight dimensions according to their statistical certainty. In the case

of the SIFT algorithm and associated pose prediction using inertial measurements,

there is no specific information provided by the algorithm regarding the statistical

knowledge of Pσσ, Pθθ, or Pzdzd
. Reasonable assumptions regarding their values

can be estimated by observing the statistics of the feature locator for a number of

images. For the experiments presented in this dissertation, the scale and orientation

parameters were given zero weight, (i.e., Pσσ,Pθθ −→ ∞I), and the distance metric

was decomposed into a pose distance and an object descriptor distance:

Dpn(ti+1) = [zpn(ti+1)− ẑp(ti+1)]
TPzpzp(ti+1)[zpn(ti+1)− ẑp(ti+1)] (4.51)

Ddn(ti+1) = [zdn(ti+1)− ẑd(ti+1)]
TPzdzd

(ti+1)[zdn(ti+1)− ẑd(ti+1)] (4.52)

where

Pzpzp(ti+1) =




Pzz(ti+1) 0 0

0 ∞ 0

0 0 ∞


 (4.53)

Pzdzd
(ti+1) = I (4.54)
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which has the result of:

• Including only the effects of the predicted pixel location in the pose distance

metric;

• Weighting all components of the object descriptor vector equally.

In order to maintain independence of the pixel error measurement, and to im-

prove search speed, the two distance metrics are used in succession. First, the pose

metric is used to determine the subset of feature vectors existing within a statistical

confidence bound (e.g., 2σ). Next, the object descriptor distance metric is calculated

for the subset of features within the confidence bound. A successful match is declared

if a feature is found with an object distance below a pre-defined threshold. In addi-

tion, to reduce the potential for false matches between objects with similar features

within the search area, a uniqueness filter can also be applied which rejects potential

feature matches which are not sufficiently distinct in feature space. This approach

attempts to maintain a balance between using the statistical pose prediction for suc-

cessful correspondence while not “coloring” the pixel error measurements, which are

assumed to be independent of the filter states.

4.2.4 Navigation State Error Estimation. Once correspondence is deter-

mined between predicted and measured features, the pixel location of the feature in

the current image is used to estimate and correct the errors in the navigation filter.

In this section, the measurement equation is mathematically defined with respect to

the augmented Kalman filter states.

Recalling Equation (4.15), the pixel location measurement is a function of the

true navigation state, landmark location, camera parameters, and an additive noise

term. Using the extended Kalman filter method presented in Section 2.8.2 requires

linearization of the measurement equation about the current state estimate. The

perturbation measurement equation for feature n at time ti+1 is given by

δzn(ti+1) = Hzxδx(ti+1) + Hzynδyn(ti+1) + v(ti+1) (4.55)
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where the influence matrices, Hzx and Hzyn , are defined in Eqns. (4.44) and (4.45).

The pixel measurement error, δzn(ti+1), is defined as

δzn(ti+1) = ẑpn(ti+1)− zpn(ti+1) (4.56)

The specific calculation of the influence matrices for this and other update types

is presented in Section 4.3.3.

4.3 Image and Inertial Fusion Algorithm Extended Kalman Filter Im-

plementation

In the previous section, the image-aided inertial navigation concept was pre-

sented in general mathematical terms. In this section, the mechanics involved in

implementing the extended Kalman filter are discussed. Because of the complex na-

ture of the filter, specific attention is given to selecting, adding, and deleting track

states from the filter. In addition, the method for calculating the measurement in-

fluence matrices are presented for landmarks of opportunity, landmarks at known

locations (reference landmarks), and celestial measurements.

4.3.1 Kalman Filter Description. An Extended Kalman Filter is con-

structed to estimate the errors in the calculated system parameters. In order to

minimize the effects of linearization errors, the system parameters are periodically

corrected by removing the current error estimate [37]. A block diagram of the system

is shown in Figure 4.8.

As defined in Section 2.6.4, the navigation error state vector, δx, consists of posi-

tion, velocity, attitude, accelerometer bias, and gyroscope bias errors and is expressed
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Figure 4.8: Image-aided inertial navigation filter block diagram. In this filter, the
location of stationary objects are tracked and used to estimate and update the errors
in an inertial navigation system. The inertial navigation system is, in turn, used to
support the feature tracking loop.

as a vector of fifteen elements:

δx =




δpn

−−−
δvn

−−−
ψ

−−−
ab

−−−
bb




15×1

(4.57)

Landmark tracks of interest are augmented to the above state vector using the pro-

cedure described in Section 4.3.2.2.
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4.3.2 Feature Tracking Algorithm. In this section, the tracking algorithm

is presented which describes the process of selecting, adding, and deleting states

corresponding to specific landmarks from the filter.

4.3.2.1 Track Selection. As mentioned in the previous section, each

landmark track requires three filter states to estimate the location of the landmark in

the navigation frame. Practical limitations on computer resources effectively limit the

number of landmarks that can be tracked concurrently. This limitation necessitates

the implementation of a track management algorithm to decide which features to

track.

The general concept for the track maintenance algorithm is to add and prune

landmark tracks in order to provide the “best” navigation information to the filter.

Although the optimal landmark choices are highly dependent on the trajectory and

scene, some general “rules-of-thumb” were used in the track maintenance algorithm.

In general, features which can be easily and accurately tracked for long peri-

ods of time provide the best navigation information. This implies choosing features

which are: strong and easily identified (to help maintain track), locally distinct (to

eliminate false correspondence), and well-separated in image space (to maximize fil-

ter observability). Thus, when Kalman Filter landmark track states are available, the

feature space of the current image is searched and new landmarks are added based on

the above criteria. The filter states are augmented in accordance with the stochastic

projection algorithm defined in Section 4.2.2.

In order to maintain only the best tracks, stale landmark tracks (i.e., no suc-

cessful correspondence available for a given period of time) are pruned by replacing

the associated filter states with new candidate tracks. Other track maintenance ap-

proaches are possible which could theoretically improve the track performance (e.g.,

semi-causal, multiple model, or velocity prediction); however, these approaches will

not be pursued in this document.
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4.3.2.2 Track Addition. Once a new track is identified, the navigation

filter must maintain an estimate of the landmark location and uncertainty. This is

accomplished by replacing the current filter states corresponding to an inactive track.

For simplicity of implementation, the filter maintains a static number of landmark

track states. When no landmark is currently being tracked in a particular state,

there are, by definition, no available measurements which affect those states. Because

the landmark track states are not dynamically coupled with the navigation states,

inactive states have no effect on the navigation solution, which allows a simple state

replacement strategy versus a more complicated dynamical approach. An example

illustrating the concept is presented below.

In this example, the states corresponding to the n-th landmark are updated with

a new track. In order to rigorously augment the filter states, the landmark location

uncertainty covariance and cross-correlation matrices (calculated in Section 4.2.2) are

required. For this illustration, the new uncertainty covariance and cross-correlation

matrices are given by P+
xy and P+

yy, respectively. As shown in Figure 4.9, the n-th

landmark error states are replaced with the δy+
n . Because the landmark position

errors are defined about the mean, the initial error estimate is the 03×1 vector. Addi-

tionally, the existing covariance matrices are replaced with either the newly calculated

matrices, or zeros as indicated by the figure.

4.3.2.3 Track Deletion. The feature tracking algorithm maintains a

list of the latest successful feature update for each track. Tracks which have not been

successfully updated in a given time or number of image frames are identified for

replacement using the method described in the previous section.

4.3.3 Measurement Models. In this section, the influence matrices relating

to various measurement types are derived and compared.

4.3.3.1 Landmark of Opportunity. The first measurement of interest

is the landmark of opportunity. As described in Section 4.2.2.1, incorporating land-
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marks of opportunity into the navigation filter requires two steps: 1) determining the

initial landmark location and associated influence matrices, and 2) calculating the

measurement errors and associated influence matrices.

The method to determine the initial landmark location and associated influence

matrices varies primarily on the method used to estimate the distance to the landmark.

Three methods are addressed in this section: monocular imaging with statistical

terrain model, binocular stereopsis with no terrain model, and time-iterated.

4.3.3.2 Landmark Location Estimation Using Statistical Terrain Model.

In this section, the landmark initial location estimate, yn, is calculated given the

undistorted pixel location of a feature of interest, z, and a statistical estimate of

the terrain height above the navigation reference plane, ht. An illustration of the

measurement geometry is shown in Figure 4.10.

The homogeneous pointing vector in the camera frame is

sc = Tc
pixz (4.58)

The resulting landmark location is given by

yn = pn + Cn
b

[
pb

cam + dCb
cs

c
]

(4.59)

where d is the distance to the landmark, projected in the camera z direction. This

distance is a function of the navigation state and the mean of the terrain height and

is derived by expanding and rearranging Equation (4.59):

dCn
b C

b
cs

c = yn − [
pn + Cn

b p
b
cam

]
(4.60)

Extracting the z component and dividing by the resulting scalar yields the landmark

distance:

d =
[yn]z −

[
pn + Cn

b p
b
cam

]
z

[Cn
b C

b
cs

c]z
(4.61)
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Figure 4.9: Landmark track state replacement. When replacing a stale landmark
track with a new landmark track, both the covariance and cross-correlation matrices
must me updated to reflect the new geometry.
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Figure 4.10: Monocular imaging geometry. The line of sight vector from the camera
to the landmark, sc, is a function of the landmark location, yn, sensor platform
location, pn, and the lever arm from the inertial sensor to the camera, pb

cam.
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where the [·]z transformation is the linear functional producing the z vector compo-

nent, which is defined as

[p]z =
[

0 0 1
]
p = pz (4.62)

Note the operation reduces vectors to scalars and matrices to vectors.

By definition, the z component of the landmark location is given by the terrain

height, ht:

[yn]z = ht (4.63)

Substituting Eqn. (4.63) into (4.61) yields

d =
ht −

[
pn + Cn

b p
b
cam

]
z

[Cn
b C

b
cs

c]z
(4.64)

Once the location of the landmark is calculated, the influence matrices from

the various uncertainties can be calculated. For this example, the following error

contributors are considered:

• Position uncertainty of the platform, δpn

• Velocity uncertainty of the platform, δvn

• Attitude uncertainty of the platform, ψ

• Attitude uncertainty of the camera, α

• Pixel measurement uncertainty, δz

• Terrain elevation uncertainty, δht

The influence matrix corresponding to the position uncertainty is defined as

Gyp =
∂yn

∂pn
(4.65)

Evaluating the partial derivative yields

Gyp = I3×3 + Cn
b C

b
cs

c ∂d

∂pn
(4.66)
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where
∂d

∂pn
= − 1

[Cn
b C

b
cs

c]z

[
0 0 1

]
(4.67)

The influence matrix corresponding to the platform attitude uncertainty is de-

fined as

Gyψ =
∂yn

∂ψ
(4.68)

Evaluating the partial derivative using the method described in Section 2.10 yields

Gyψ = Cn
b

([
pb

cam + dCb
cs

c
]×)

+ Cn
b C

b
cs

c ∂d

∂ψ
(4.69)

where
∂d

∂ψ
= d

[(
Cn

b C
b
cs

c
)×]

z

[Cn
b C

b
cs

c]z
(4.70)

The influence matrix corresponding to the camera attitude uncertainty is defined

as

Gyα =
∂yn

∂α
(4.71)

Evaluating the partial derivative yields

Gyα = −dCn
b C

b
c [sc×] + Cn

b C
b
cs

c ∂d

∂α
(4.72)

where
∂d

∂α
= −d

[
Cn

b C
b
c (sc×)

]
z

[Cn
b C

n
b C

b
cs

c]z
(4.73)

The influence matrix corresponding to the pixel location measurement uncer-

tainty is defined as

Gyz =
∂yn

∂z
(4.74)

Evaluating the partial derivative yields

Gyz = dCn
b C

b
cT

c
pix


 I2×2

0 0


 + Cn

b C
b
cs

c ∂d

∂z
(4.75)
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where

∂d

∂z
= d


Cn

b C
b
cT

c
pix


 I2×2

0 0







z

[Cn
b C

b
cs

c]z
(4.76)

Finally, the influence matrix corresponding to the terrain elevation uncertainty

is defined as

Gyh =
∂yn

∂ht

(4.77)

Evaluating the partial derivative yields

Gyh =
1

[Cn
b C

b
cs

c]z
Cn

b C
b
cs

c (4.78)

The remaining influence matrices are all zeros.

Once a landmark state has been added to the filter, additional measurements

of the pixel location of the target are processed using the measurement equation:

z = Tpix
c sc (4.79)

where sc is the homogeneous form of the line-of-sight vector, sc, defined as

sc = Cc
b

[
Cb

n (yn − pn)− pb
cam

]
(4.80)

The calculation of the measurement influence matrices proceeds in a similar

fashion. The influence matrix corresponding to the position uncertainty is defined as

Hzp =
∂z

∂pn
. (4.81)

Evaluating the partial derivative yields

Hzp = Tpix
c

sc
z

∂sc

∂pn − sc
[

∂sc

∂pn

]
z

(sc
z)

2 (4.82)
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where
∂sc

∂pn
= −Cc

bC
b
n (4.83)

The influence matrix corresponding to the camera misalignment is defined as

Hzα =
∂z

∂α
(4.84)

Evaluating the partial derivative yields

Hzα = Tpix
c

sc
z

∂sc

∂α
− sc

[
∂sc

∂α

]
z

(sc
z)

2 (4.85)

where
∂sc

∂α
= (sc×) (4.86)

The influence matrix corresponding to the landmark location uncertainty is

defined as

Hzy =
∂z

∂yn
(4.87)

Evaluating the partial derivative yields

Hzy = Tpix
c

sc
z

∂sc

∂yn − sc
[

∂sc

∂yn

]
z

(sc
z)

2 (4.88)

where
∂sc

∂yn
= Cc

bC
b
n (4.89)

All other influence matrices are zero.

4.3.3.3 Landmark Location Estimation Using Binocular Stereopsis.

Another method for determining the distance of an object within an image is to utilize

binocular measurements. Binocular measurements do not require a terrain model,

which makes this method appropriate for navigation in unknown environments, or

when the sensor is on or near the ground. In order to properly interpret binocular
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Figure 4.11: Binocular imaging geometry. The line of sight vector from the binoc-
ular reference point to the landmark, sc0

0 , is a function of the landmark location, yn,
sensor platform location, pn, the lever arm from the inertial sensor to the binocular
reference point, pb

0, and the respective lever arms from the binocular reference point
to cameras a and b, pc0

cama
and pc0

camb
, respectively.

measurements, it is convenient to establish a binocular disparity reference frame,

which is located between the optical centers of two cameras. The resulting binocular

imaging geometry is shown in Figure 4.11.

Solving for a landmark location using binocular measurements requires three

steps: 1) feature selection and matching between binocular image pairs, 2) calculation

of the relative line of sight vector from the binocular origin to the landmark, and

3) estimating the landmark location and augmenting the Kalman filter.

The feature selection and matching process begins by selecting a candidate

feature from one of the images in the binocular pair, using the same location quality

metric presented previously for the monocular imaging calculation. This establishes a

candidate binocular feature. Once a base feature is chosen, the feature location of the
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binocular match is statistically projected into the feature space of the corresponding

image. For example, given the location of a feature from image a, za(ti), a statistical

binocular projection is desired to predict the corresponding binocular match mean

and uncertainty in the feature space of image b. The pixel location in the b frame can

be described by

zb = Tpix
cb

scb (4.90)

and

scb = Ccb
c0

[
kCc0

ca
Tca

pixz
a + pc0

cama
− pc0

camb

]
(4.91)

where Tca
pix and Tpix

cb
are the camera projection matrices for camera a and b, respec-

tively, Cc0
ca

and Ccb
c0

are the orientation direction cosine matrices for camera a and

b, respectively. In addition, pc0
cama

and pc0
camb

are the location vectors from the c0

frame for camera a and b, respectively (see Figure 4.11). Finally, k is the (unknown)

distance parameter.

Variations in k describe a portion of the epipolar line in the secondary image.

Depending on the system conditions, some or all of the parameters can be treated

as random variables. In this example, the relative camera location and orientations,

distance, and pixel location errors are modeled as random variables with Gaussian

distributions. While the distribution of the distance parameter, k, is most accurately

modeled as a uniform random variable, in order to simplify the calculation of the

search boundary, a Gaussian distribution is desired which is representative of the

uniform random variable when projected into the corresponding image. An acceptable

Gaussian distribution for k which results in accurate predictions of the binocular pixel

search space is empirically determined as a function of the binocular disparity. The

binocular disparity, dbinoc, is defined as

dbinoc = ‖pc0
cama

− pc0
camb

‖ (4.92)

111



The distance parameter, k, is thus modeled as a Gaussian distribution with mean and

variance given by

k = E[k] = 4.5dbinoc (4.93)

σ2
k = E[(k − k)2] = 9d2

binoc (4.94)

which is determined empirically to result in a reasonable approximation of the binoc-

ular search space when projected along the epipolar line (see Figure 12(b)).

The predicted pixel location mean is calculated using the mean values of the

parameters (see Equations (4.90) and (4.91)):

ẑb = f
[
za,Tca

pix,C
c0
ca

, k,pc0
cama

,pc0
camb

,C
cb

c0
,Tpix

cb

]
(4.95)

Assuming independent error sources, the pixel location error covariance matrix is

given by

Pzbzb
= HzbzaRzazaH

T
zbza

+ HzbpaPpapaH
T
zbpa

+ HzbαaPαaαaH
T
zbαa

+ Hzbpb
Ppbpb

HT
zbpb

+Hzbαb
Pαbαb

HT
zbαb

+ Hzbkσ
2
kH

T
zbk

+ Rzbzb
(4.96)

where Rzaza and Rzbzb
are the (independent) pixel location error covariance matrices

for images a and b, respectively. The binocular lever arm location and orientation

uncertainty covariances are given by Ppapa and Pαaαa for camera a and Ppbpb
and Pαbαb

for camera b. The influence matrices are defined as the partial derivatives calculated
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about the estimated states (x̃):

Hzbza =
∂h

∂zza

∣∣∣∣
x̃

(4.97)

Hzbpa =
∂h

∂pc0
cama

∣∣∣∣
x̃

(4.98)

Hzbαa =
∂h

∂αa

∣∣∣∣
x̃

(4.99)

Hzbpb
=

∂h

∂pc0
camb

∣∣∣∣
x̃

(4.100)

Hzbαb
=

∂h

∂αb

∣∣∣∣
x̃

(4.101)

Hzbk =
∂h

∂k

∣∣∣∣
x̃

(4.102)

Once the feature location has been projected into the corresponding binocular

feature space, the matching process consists of determining the features which are

within a given statistical distance of the prediction, then choosing the feature which

minimizes the comparative feature description distance. This is equivalent to the

procedure discussed in Section 4.2.3. An example of the binocular matching process

is shown in Figures 12(a) and 12(b).

Once a binocular pair of pixel locations corresponding to a landmark have been

determined, the next step is to estimate the relative line of sight vector from the

origin of the binocular frame to the landmark. From Figure 4.11, the respective pixel

locations can be expressed as a function of the relative line of sight vector:

za = ha[s
c0
0 ,Cca

c0
,pc0

cama
,Tpix

ca
] (4.103)

zb = hb[s
c0
0 ,Ccb

c0
,pc0

camb
,Tpix

cb
] (4.104)

where sc0
0 is the relative line of sight vector, which can be estimated using nonlinear

regression techniques such as iterative least squares (see Section 2.9).
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(b) Right image.

Figure 4.12: Binocular feature prediction. The location of a selected feature (blue +
with red circle) is predicted from the left image to the right image using a statistical
model of the relationship between the two cameras. Note the 2σ bound agrees well
with the range variation line. The range variation line indicates where the predicted
landmark will appear at a distance from 1 meter to 1000 meters (from left to right).
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Expanding equations (4.103) and (4.104) yields

za = Tpix
ca

sca
a (4.105)

zb = Tpix
cb

scb
b (4.106)

where

sca
a = Cca

c0

[
sc0
0 − pc0

cama

]
(4.107)

scb
b = Ccb

c0

[
sc0
0 − pc0

camb

]
(4.108)

The estimation procedure results in an estimated line of sight vector, ŝc0
0 , and

an associated covariance matrix, Ps0s0 . The landmark location in the navigation

frame can now be estimated by substituting the line of sight vector estimate and the

navigation state estimate into the landmark location equation:

yn = pn + Cn
b

[
pb

0 + Cb
c0
sc0
0

]
(4.109)

Once the landmark location and the associated covariance and cross-correlation ma-

trices have been calculated, the Kalman filter states can be augmented using the

procedure described in Section 4.3.2.2.

This procedure has assumed the binocular regression algorithm converges to

the correct minimum. When the landmark is a large distance away, relative to the

binocular disparity, pixel measurement noise can create a situation where the two line

of sight vectors are skewed outward and result in negative (i.e., impossible) distance

estimates. This condition can be easily detected prior to the regression and another

binocular feature can be selected.

4.3.3.4 Landmark Location Estimation Using Egomotion and Monocular

Measurements. In the absence of terrain information or binocular images, inertial

measurements can be exploited to estimate the distance to landmarks using egomo-
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tion. In this scheme, the pixel location of a selected landmark is measured over two

or more images until the distance becomes observable. Once the distance is observ-

able, the feature is tracked (and used for navigation) by augmenting the Kalman filter

state vector in an identical fashion to that described in Section 4.3.2.2. The concept

of utilizing a series of monocular measurements with unknown terrain information is

not new (see Strelow [62]), however, this research improves upon Strelow’s method by

leveraging inertial measurements to statistically constrain the correspondence search.

The proposed procedure consists of two steps: 1) given a feature location in an

image at time ti, predicting the feature location in the image at time ti+1, and 2)

estimating the landmark location from a series of pixel measurements. The statistical

feature prediction method is presented first.

Predicting the location of a feature from one image to another using inertial mea-

surements is similar to the binocular prediction technique presented in Section 4.3.3.3,

except that the binocular disparity is estimated using the change in navigation state.

The feature selection and matching process begins by selecting a candidate feature

from the image at time ti, using the same location quality metric presented previ-

ously for the monocular imaging calculation. Once a candidate feature is chosen,

the feature location is statistically projected into the feature space at time ti+1. The

monocular egomotion imaging geometry is shown in Figure 4.13. For example, given

the location of a feature from the image at time ti, z(ti), a statistical projection is

desired to predict the corresponding feature location in the feature space at time ti+1.

The pixel location at time ti+1 can be described by

z(ti+1) = Tpix
c sc(ti+1) (4.110)

and

sc(ti+1) = Cc
b{CnT

b (ti+1)
[
Cn

b (ti)
(
kCb

cs
c(ti) + pb

cam

)
+ pn(ti)− pn(ti+1)

]− pb
cam}
(4.111)
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Figure 4.13: Monocular egomotion geometry. The line of sight vector from the
camera location at time ti+1 is a function of the landmark location and the camera
egomotion from time ti to ti+1.

where pn(ti) and pn(ti+1) are the positions of the vehicle at times ti and ti+1, respec-

tively. In addition, the direction cosine matrices cn
b (ti) and Cn

b (ti+1) are the body

to navigation frame DCMs at times ti and ti+1. The unknown distance parameter is

given by k. Finally, the homogeneous landmark location vector at time ti is a function

of the pixel measurement, z(ti):

sc(ti) = Tc
pixz(ti) (4.112)

Variations in k describe a portion of the epipolar line in the second image. While

k is most accurately described as a uniform random variable, in order to simplify the

calculation of a search boundary, a representative Gaussian distribution is desired.

From Equation (4.111), the distance between the camera location at time ti and ti+1

is defined as

d = ‖Cc
b

[
CnT

b (ti+1)
(
Cn

b (ti)p
b
cam + pn(ti)− pn(ti+1)

)− pb
cam

]
‖ (4.113)
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In a similar fashion to that presented in Section 4.3.3.3, the distance parameter, k, is

modeled as a Gaussian distribution with mean and variance given by

k = E[k] = 4.5d (4.114)

σ2
k = E[(k − k)2] = 9d2 (4.115)

The predicted pixel location mean and covariance can now be calculated. Gen-

eralizing Equations (4.110)-(4.112) results in the nonlinear measurement equation:

z(ti+1) = h [k,pn(ti),p
n(ti+1),C

n
b (ti),C

n
b (ti+1), z(ti)] + v(ti+1) (4.116)

where v(ti+1) is additive, white, Gaussian noise. The pixel location error at time ti+1

is given by

δz(ti+1) = Hzxi
δx(ti) + Hzxi+1

δx(ti+1) + Hzkδk + Hzzi
v(ti) + Hzzi+1

v(ti+1) (4.117)

where δx(ti) is the navigation state error at time ti, δx(ti+1) is the navigation state

error at time ti+1, v(ti) is the measurement noise at time ti, and v(ti+1) is the mea-

surement noise at time ti+1. The influence matrices are given by Hz· and are the

respective partial derivatives of the measurement function.

Calculation of the pixel location error covariance requires knowledge of the state

transition matrix from time ti to time ti+1, Φ
ti+1

ti , and the additive process noise

matrix, Qd, which are available from the Kalman filter propagation equations (see

Section 2.8). The navigation error covariance can now be expressed as a function of

the state transition matrix and process noise:

Pxx(ti+1) = Φ
ti+1

ti Pxx(ti)Φ
ti
ti+1

+ Qd (4.118)
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The pixel location uncertainty at time ti+1 is defined as

Pzz(ti+1) = E
[
δz(ti+1)δz(ti+1)

T
]

(4.119)

Substituting Equations (4.117)-(4.118) into (4.119), and noting the independence of

the pixel measurement noise and initial distance estimate yields the pixel location

uncertainty:

Pzz(ti+1) = Hzxi
Pxx(ti)H

T
zxi

+ Hzxi+1
Φ

ti+1

ti Pxx(ti)H
T
zxi

+ Hzxi
Pxx(ti)Φ

ti
ti+1

HT
zxi+1

+Hzxi+1
Φ

ti+1

ti Pxx(ti)Φ
ti
ti+1

HT
zxi+1

+ Hzxi+1
Φ

ti+1

ti QdΦ
ti
ti+1

HT
zxi+1

+Hzkσ
2
kH

T
zk + Hzzi

Rzz(ti)H
T
zzi

+ Rzz(ti+1) (4.120)

Now that the predicted pixel location mean and covariance are determined, the cor-

respondence search for the feature of interest now proceeds in an identical fashion to

the binocular method. This search procedure can be accomplished for each candi-

date feature in an image, and results in a list of correspondences between features in

multiple images.

Given a successful correspondence between a single feature or a collection of

features, the measurements can be used to estimate the relative location of each

landmark. Once a landmarks has an initial position estimate, the navigation state

vector is augmented and subsequent measurements are used to refine the landmark

location and estimate the errors in the navigation state. A complete method to

accomplish this task is presented by Strelow [62].

This approach has some limitations which warrant discussion. The first issue

is the potential lack of distance observability when the camera translation distance

is small relative to the landmark distance. This is equivalent to the issues encoun-

tered when attempting to estimate the location of distant landmarks in a binocular

scenario (see Section 4.3.3.3). In addition, even when sufficient egomotion exists in

order to observe the landmark position, unconstrained optical methods suffer from
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the so-called scale ambiguity [36]. This scale ambiguity limits the observability of an

image correspondence measurement to relative angles and a direction of translation

vector. The scale of the translation is not observable. While this is not a catastrophic

condition, any errors in the estimated velocity state result in a distance bias, which

causes an un-modeled accumulation of errors in the extended Kalman filter. In order

to compensate for this effect, the process noise must be increased as discussed in [38].

An example of this effect is demonstrated via simulation in Chapter VI.

4.4 Absolute Measurements

In the previous section, a theory for exploiting the apparent location of land-

marks in multiple images was presented, where incomplete information regarding the

landmark location was available. This is a form of relative navigation, because the

estimated location of the landmark (and navigation state) are all relative to previous

estimates of the navigation state, and, by definition, multiple measurements in time

are required to extract navigation information.

An absolute measurement can be exploited when complete position information

is available for a given landmark. In contrast to relative measurements, absolute

measurements do not suffer from long-term drift due to integration of errors. In

addition, since absolute measurements do not require estimation of the landmark

location, no additional filter states are required. In this section, three types of absolute

landmark measurements are presented and analyzed.

4.4.1 Reference Landmark. A reference landmark requires both the prior

knowledge of the physical location relative to the navigation frame and the feature

descriptor vector. Performing a reference landmark measurement requires three steps:

prediction of the landmark location in feature pose space, performing a statistically-

constrained correspondence search for the feature of interest in the current measured

feature vectors, and finally incorporating the measured location of the reference land-

mark into the filter.
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Given a known reference landmark with position, yn, and uncertainty, Pyy, the

pixel location in the current image is a nonlinear function of the navigation state and

the landmark location:

z = Tpix
c sc (4.121)

where

sc = Cc
b

[
Cb

n (yn − pn)− pb
cam

]
(4.122)

The pixel location uncertainty, Pzz, is defined as

Pzz = E
[
δzδzT

]
(4.123)

where

δz = Hzxδx + Hzyδy + v (4.124)

The influence matrices, Hzx and Hzy are the partial derivatives of the measurement

equation with respect to the navigation state and landmark errors, respectively. The

pixel measurement errors are represented by v. Substituting Equation (4.124) into

(4.123), and noting the independence between the navigation, landmark, and pixel

measurement errors results in the following expression for the pixel location uncer-

tainty covariance

Pzz = HzxPxxH
T
zx + HzyPyyH

T
zy + Rzz (4.125)

The main difference between the statistics of relative and absolute landmarks is the

independence of the landmark position and navigation state errors.

Once the pixel location and associated covariance matrix have been calculated,

the next step is to determine the potential correspondence between the features mea-

sured from the current image. This procedure is identical to that presented in Sec-

tion 4.2.3, where the feature distance is calculated for all features within a search

region defined by statistics of the predicted pixel location.
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Finally, if there is a successful match, the measured pixel location errors are

used to update the navigation states. The rightmost two terms in Equation (4.124)

are combined to produce the measurement equation:

δz = Hzxδx + v∗ (4.126)

where

R∗
zz = E

[
v∗v∗

T
]

(4.127)

R∗
zz = HzyPyyH

T
zy + Rzz (4.128)

4.4.2 Revisitation of Previously Tracked Landmark. When navigating us-

ing landmarks of opportunity (i.e., no or incomplete prior position information), the

methods presented in this chapter require the Kalman filter to maintain an estimate

of the three-dimensional location of the landmark. By maintaining a database of

these landmarks, their feature descriptors, and position estimates, this information

can be leveraged when revisiting these landmarks and resulting in absolute position

measurements. In other words, these methods allow a properly equipped sensor to

“learn” it’s environment and exploit this information to eliminate a major source of

error. This concept is demonstrated using both simulation and experimental methods

in Chapter VI.

The development of the measurement equations for a previously estimated land-

mark is identical to the previous section, with one consideration. The pixel location

uncertainty covariance shown in Equation (4.125), assumes that the navigation state

errors and the landmark location errors are independent. This is not always true

when revisiting a previously tracked landmark as the cross-correlation matrix is non-

zero. Fortunately, the errors decorrelate over time due to the integration of noise

sources within the filter. Thus, care must be taken to ensure revisited landmarks are

sufficiently decorrelated before using them for reference landmark updates.
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4.4.3 Celestial Measurements. As mentioned in Section 3.1.1, celestial bod-

ies represent a very high-quality source of optical navigation measurements. The key

difference between celestial measurements and landmark measurements is the great

distance to celestial bodies relative to the size of the Earth.

The celestial measurement is simply the current pixel location of an identified

celestial object. Given a celestial object n, located at a known direction relative to the

Earth (based on astronomical almanac data) [25], is represented by the unit vector,

še
n(ti), at time ti [16]. The object direction unit vector in the camera frame, šc

n(ti), is a

function of the navigation frame orientation, vehicle orientation, and camera-to-body

orientation:

šc
n(ti) = Cc

bC
b
nC

n
e š

e
n(ti) (4.129)

where Cn
e is the Earth frame to navigation frame direction cosine matrix. Using

the camera model, the undistorted pixel location, z(ti), is a function of the camera

projection matrix, Tpix
c , and the homogeneous form of the object direction unit vector:

z(ti) = Tpix
c sc

n(ti) + v(ti) (4.130)

where v(ti) is additive white Gaussian noise.

By employing the techniques presented in Section 4.3.3, the influence matrix is

calculated in a straightforward manner. The influence matrix corresponding to the

attitude uncertainty is defined as

Hzψ =
∂z

∂ψ
(4.131)

Evaluating the partial derivative yields

Hzψ = Tpix
c

šc
z

∂šc

∂ψ
− šc

[
∂šc

∂ψ

]
z

(šc
z)

2 (4.132)
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where
∂šc

∂ψ
= −Cc

bC
b
n (Cn

e š
e×) (4.133)

The influence matrix corresponding to the camera misalignment is defined as

Hzα =
∂z

∂α
(4.134)

Evaluating the partial derivative yields

Hzα = Tpix
c

šc
z

∂šc

∂α
− šc

[
∂šc

∂α

]
z

(šc
z)

2 (4.135)

where
∂šc

∂α
=

(
Cc

bC
b
nC

n
e y̌

e
)× (4.136)

All other influence matrices are zero.

In the next chapter, a practical image and inertial navigation sensor is designed

and calibrated using the algorithms presented in the previous sections.
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V. Experimental Navigation System Design and Calibration

Due to the complex nature of the image-aided inertial navigation problem, exper-

imental data collections are critical in order to demonstrate the performance

of the proposed navigation algorithm. In this chapter, the design and calibration of

the experimental navigation system is presented. The chapter begins by outlining

an overall system architecture, then describes the sensors and their respective data

products. Finally, the calibration and tuning methods are presented.

5.1 Experimental Image-Aided Navigation System Overview

The image-aided navigation system used in the research consists of a navigation

computer, inertial measurement unit, and a pair of digital cameras. As shown in Fig-

ure 5.1, the system is configured in two ways, depending on the conditions of the data

collection. In the ground system, the cameras are mounted level to the sensor plate

with approximately 22 cm of binocular disparity. In the flight system, the cameras are

mounted on a rigid bracket which is pointed downward by approximately 45 degrees

in order to maintain a view of the ground. The cameras are spaced approximately

44 cm apart. The larger binocular disparity increases the effective range for reliably

determining the landmark distances using binocular stereopsis.

The sensors are connected to a navigation computer using various protocols. A

discrete bus is used to synchronize the sensors with the master clock. A block diagram

of the system is shown in Figure 5.2. The details of the system components are given

in the following sections.

5.1.1 Sensors. As shown in the block diagram, the sensor test platform

consists of digital cameras and inertial measurement units. The digital cameras

are both PixeLINK PL-A741 machine vision cameras. The PL-A741 camera uses

a monochrome complementary metal-oxide semiconductor (CMOS) imaging sensor

with 1280x1024 pixel (1.3 megapixel) resolution. The pixels are 6.7 µm square which

results in a sensor size of 8.576 mm × 6.921 mm. The PL-A741 camera accepts stan-
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(a)

(b)

Figure 5.1: Image-aided inertial navigation system. The navigation system consists
of a tactical-grade IMU, consumer-grade IMU, and two monochrome digital cam-
eras mounted to a rigid plate. Panel (a) shows the system used for ground testing.
Panel (b) shows the system as installed for flight testing.
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Figure 5.2: Navigation system block diagram. The image-aided inertial navigation
system consists of tactical and consumer grade IMUs, two digital cameras, and a
navigation computer. The sensors are synchronized using a discrete bus.
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dard C-mount lenses. The camera communicates with the navigation computer using

an IEEE-1394a (FireWire) interface, which is capable of transmitting approximately

3 frames per second at full resolution. The PL-A741 includes an external interface

which can be used to trigger synchronized frame captures. Finally, the camera in-

cludes a global shutter which exposes all of the pixels simultaneously. This avoids

one of the primary limitations of standard, line-scanned video sources. The complete

PL-A741 specifications are listed in [49].

The cameras are paired with Pentax/Cosmicar C30405 C-mount lenses. These

lenses feature a manual iris which ranges from full closed to f/1.8. The 4.8 mm focal

length results in a horizontal field of view of approximately 45 degrees.

In order to test the performance of the system with variations in inertial sensors,

both tactical and consumer-grade IMUs are mounted to the platform. The system

is configured to record measurements from both sensors simultaneously so that the

same navigation profile can be processed using each of the sensors separately.

The Honeywell HG1700 is a tactical-grade, strapdown inertial measurement

unit. The unit consists of a GG1308 ring-laser gyroscope and triad of RBA-500 ac-

celerometers which produce measurements at 100 Hz. The gyroscopes and accelerom-

eters have a dynamic range of ± 1000 degrees per second and ± 50 g, respectively.

Selected specifications for the HG1700 are shown in Table 5.1.

The Crista IMU is a consumer-grade, strapdown inertial measurement unit.

The IMU consists of micro-electrical mechanical systems (MEMS) gyroscopes and ac-

celerometers which produce measurements at 100 Hz. The gyroscopes and accelerom-

eters have a dynamic range of ± 300 degrees per second and ± 10g, respectively.

Selected specifications for the Crista IMU are shown in Table 5.1.

5.2 Calibration and Alignment

The ultimate goal of the calibration and alignment process is to determine the

relative orientation between an imaging and inertial sensor, or more specifically, the
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Table 5.1: Inertial measurement sensor specifications for the Cloud Cap Technol-
ogy Crista consumer-grade IMU [6] and Honeywell HG1700 tactical-grade IMU [22].
The parameters noted with an asterisk are not included in the specifications and are
estimates.

Parameter (Units) Crista IMU HG1700
Sampling interval (ms) 5.0 10.0
Gyro bias sigma (deg/hr) 1800 1.0
Gyro bias time constant (hr) 2∗ 2∗

Angular random walk (deg/
√

hr) 2.23 0.3
Gyro scalefactor sigma (PPM) 10000 150
Accel bias sigma (m/s2) 0.196 0.0098
Accel bias time constant (hr) 2∗ 2∗

Velocity random walk (m/s/
√

hr) 0.261 0.57∗

Accel scalefactor sigma (PPM) 10000 300

sensitive axes of both sensors. The process can be divided into two main steps. The

first step consists of calibrating the optical sensors with respect to unknown optical

properties. The final step is to determine the relative location and orientation between

the sensitive axes of the imaging and inertial sensors. Both steps are presented in

detail in the following sections and address some limitations found in the current

literature.

5.2.1 Camera Calibration. The camera and lens system must be properly

calibrated in order to accurately map a pixel location to a line of sight vector, which is

critical to the performance of the system. As presented in Sections 2.7.3 and 2.7.2, the

camera/lens model consists of both a projection model based on a pinhole camera with

an associated nonlinear correction to remove the effects of radial optical distortion

caused by the lens. The calibration parameters of interest are

• Horizonal pixel size (sx)

• Vertical pixel size (sy)

• Effective focal length (f)

• Nonlinear optical distortion parameters (a2, a4)
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Figure 5.3: Sample image of optical calibration array. The calibration array consists
of a 48× 96 inch board with reference holes drilled at one inch intervals. The effects
of the optical distortion which cause straight lines to appear curved are visible in the
image.

• Center of optical distortion (c)

In this experiment, the specified values of the horizontal and vertical pixel size pa-

rameters are assumed to be accurate and are not explicitly estimated. This is justified

due to the precise nature of the photolithographic process used to create the CMOS

array.

The calibration is accomplished by imaging a series of surveyed reference points

and measuring the resulting pixel location of each point. In order to maintain observ-

ability of all parameters, images must be taken at varying distances. The reference

consists of a flat, 4×8 foot board with calibration holes drilled at one inch intervals. A

sample image of the calibration array is shown in Figure 5.3. Note the effects of radial

distortion in the image, which cause straight lines to appear curved in the image.

In order to predict the pixel location of each calibration point in the image,

the relative pose of the camera is required. Unfortunately, the true pose of a camera
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is difficult to independently measure to the relative precision required to properly

observe the camera calibration parameters. Thus a method was used to estimate the

pose and calibration parameters simultaneously. In estimation terminology, the pose

is considered a nuisance parameter which is required in order to estimate the true

parameters of interest.

Because the cameras are arranged for binocular imaging, estimation of the cali-

bration parameters is accomplished concurrently. Since the relative pose between the

cameras is constant and partially known, this imposes an additional constraint on the

estimation process. Incorporation of the additional parameters required for binocular

estimation results in the following parameter list.

• Effective focal length for camera a (fa)

• Effective focal length for camera b (fb)

• Nonlinear optical distortion parameters for camera a (aai
)

• Nonlinear optical distortion parameters for camera b (abi
)

• Center of optical distortion for camera a (ca)

• Center of optical distortion for camera b (cb)

• Location of camera a with respect to the binocular reference frame (pc0
cama

)

• Location of camera b with respect to the binocular reference frame (pc0
camb

)

• Binocular reference frame to camera a frame DCM (Cca
c0

)

• Binocular reference frame to camera b frame DCM (Ccb
c0

)

• Location of binocular reference in navigation frame for image j (pn
j )

• Navigation to binocular reference frame DCM for image j (Cc0
nj

)

The binocular measurement geometry is shown in Figure 4.11.

The resulting nonlinear regression function for camera a, image j, is given by

h1a(fa, ca,p
n
j ,C

c0
nj

,Cca
c0

)− h2a(ca, aa2 , aa4 , z
d
aj

) = 0 (5.1)
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and similarly for camera b, image j

h1b(fb, cb,p
n
j ,Cc0

nj
,Ccb

c0
)− h2b(cb, ab2 , ab4 , z

d
bj

) = 0 (5.2)

where zd represents the pixel location of the calibration point prior to removal of the

optical distortion.

The h1 function represents the projection of the calibration point, yn, into the

image plane using the pinhole camera model. This function is defined for camera a

as

h1a =


 −fa/sx 0 p

0 fa/sy p
ca2×1




2×3

sca (5.3)

where

sca = Cca
c0

[
Cc0

n (yn − pn)− pc0
cama

]
(5.4)

The h2 function represents the effects of optical distortion, which is defined in Equa-

tion (2.91), and repeated here for clarity for camera a

h2a =
(
zd

a − ca

) (
1 + aa2r

2 + aa4r
4
)

+ ca (5.5)

where

r = ‖zd
a − ca‖ (5.6)

Thus, a nonlinear regression can be performed by matching the true location of each

calibration point with its projected location in each image.

When performing this calibration, care must be taken to promote observability

in several areas. The first area of potential unobservability occurs when estimating

the nonlinear optical distortion parameters, since both are functions of pixel radius

(one in r2 and one in r4). This issue is mitigated by ensuring the calibration points are

located at a wide variety of radial distances from the center of the image. The second

area of weak observability occurs when estimating the camera orientation and location

relative to the binocular reference frame. Assuming the unknown orientation of the

132



cameras relative to the binocular reference frame is small, the relative orientation

between the cameras is estimated, instead of each orientation separately. In addition,

since the relative location of the cameras is well known, an estimate of the value

is not needed and the parameters are removed from the regression. Finally, there

is unobservability between the distance component of the position vector and the

estimated focal length. This is mitigated by accurately measuring the distance to

the calibration array for each image and effectively removing this variable from the

regression.

The binocular calibration is accomplished at three measured distances from the

calibration array. A sample image which shows the prediction errors before and after

the calibration process is shown in Figures 4(a) and 4(b). A total of 10397 measure-

ments of calibrated locations are used to estimate the intrinsic binocular parameters.

The resulting mean of the squared pixel matching errors was 0.84, which agreed with

the expected pixel measurement uncertainty due to the correlation process.

Once the binocular calibration has been completed, the next step is to esti-

mate the relative location and orientation between the binocular rig and the inertial

measurement unit. The procedure used to accomplish this is presented in the next

section.

5.2.2 Sensor Alignment. In order to accurately combine the measurements

from optical and inertial sensors, the relative position and orientation between the

sensors must be known. More precisely, the relative position and orientation must

be determined between the sensitive axes of the respective sensors. In this section,

a method is proposed which estimates these parameters by combining independent

truth information with imaging and inertial sensor measurements of features with

known relative locations.

The method consists of two steps, which may be treated independently. The first

task is to estimate the location and orientation of the IMU center by combining IMU

measurements with a position and orientation source of appropriate accuracy (e.g.,
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(a) Before calibration.

(b) After calibration.

Figure 5.4: Binocular camera calibration. This pair of sample images illustrates
the improvements achieved during the camera calibration. The magenta plus symbols
indicate the predicted locations of the calibration points and the blue crosses indicate
the actual locations of the calibration points in the image.
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GPS or high-quality stationary alignment [54]). In this experiment, differentially-

corrected GPS measurements are optimally combined with the inertial measurements

in order to produce an accurate position and orientation estimate (with associated

uncertainty covariance) at times corresponding with image capture events.

The second task is to measure the pixel locations of features with known physical

location relative to the navigation frame from a single or multiple images. This

relationship is governed by the pixel measurement equation:

z = h
(
Cca

c0
,Cc0

b ,Cb
n,y

n,pn,pb
0,p

c0
cam

)
(5.7)

where the body to binocular frame DCM, Cc0
b , and the relative location vector be-

tween the body and binocular frame, pb
0, are the object parameters of the nonlinear

regression. More explicitly, the pixel measurement equation is given by

z = Tpix
ca

sca (5.8)

where

sca = Cca
c0
{Cc0

b

[
Cb

n (yn − pn)− pb
0

]− pc0
cam} (5.9)

As discussed in the previous section, there are observability issues which must

be understood in order to ensure an accurate estimate. The first issue is the limited

visibility of the relative location vector. This issue is mitigated by measuring the

relative location between the two sensors and leaving the relative location out of the

estimation process. The next issue regarding observability is related to the funda-

mental measurement accuracy of the sensors, primarily the measurement accuracy

of the gyroscope and the camera angular accuracy. This issue is investigated using

simulations of inertial sensors with varying accuracy.

A qualitative estimate of achievable camera to body alignment accuracy for

various inertial sensor models as a function of gyroscope random walk is shown in

Figure 5.5. As expected, improving the quality of the inertial sensor yields improved
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Table 5.2: Camera to inertial alignment accuracy accelerometer / gyroscope per-
formance sensitivity. Theoretical alignment performance (in 1 − σ RMS arcseconds)
is shown as a function of various combinations of sensors from the Crista, HG1700,
and HG9900 IMUs after completing a multi-angle, stationary alignment profile.

HG9900 Gyro HG1700 Gyro Crista Gyro
HG9900 Accel 11.1” 22.7” 41.3”
HG1700 Accel 11.6” 45.4” 71.8”
Crista Accel 12.2” 68.1” 291.2”

alignment, up to the accuracy of the image sensor to resolve the feature locations.

In this case, the camera alignment estimate for the navigation grade IMU (HG9900)

is limited by the image measurements. This could be improved by increasing the

angular sampling frequency of the imaging sensor [15]. A sensitivity analysis is per-

formed by creating theoretical combinations of accelerometer and gyroscopic sensors

and estimating the boresight alignment accuracy using the standard alignment pro-

file. The results, shown in Table (5.2), indicate the performance of the gyroscope

has a stronger contribution to the achievable boresight accuracy, although both sen-

sors influence the ultimate performance due to coupling between accelerometer and

gyroscopic error states.

These results illustrate the relationship between the accuracy of the optical and

inertial sensors and the ability to determine the relative orientation of the sensors.

More fundamentally, even if a mechanical or other method existed to provide a “bet-

ter” alignment (e.g., relative to the “case”), it would be impossible to prove as the

sensor measurements limit the observability of the relative alignment.

In the next chapter, the mathematical model presented in Chapter IV is vali-

dated using simulation and experimental methods.
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Figure 5.5: Typical camera-to-inertial alignment accuracy for various grades of
IMU. Specific results are shown for the Crista, HG1700, and HG9900 IMUs after
completing a multi-angle, stationary alignment profile.
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VI. Simulation and Experimental Results

In order to validate the mathematical development presented in Chapter IV, the

algorithms are evaluated using both simulation and experimental methods. An in-

cremental testing philosophy is used to validate the accuracy of the stochastic feature

projection algorithms prior to evaluating the system navigation performance. This

chapter is arranged as follows. First, the stochastic projection algorithms are tested

using a Monte Carlo simulation and demonstrated with flight test data. Next, the

image and inertial fusion algorithm is tested using a ground simulation and verified

with a ground test. Finally, the image and inertial fusion algorithm is tested in a

simulated flight environment.

6.1 Stochastic Projection Algorithm Tests

This experiment validates the stochastic projection method using both simu-

lated and real data collected from an airborne system. A Monte Carlo simulation of

the test flight is performed to validate the stochastic projection model with respect to

a statistically significant sampling of random error contributors. The flight test data

are used to validate the performance of the algorithm in a real-world environment. In

the next section, the simulation parameters and results are presented.

6.1.1 Monte Carlo Simulation. The performance of the stochastic projec-

tion method presented in Section 4.2.2 is verified using a statistically representative

ensemble of sample functions (300 per run). The data collection system used on the

experimental test flights is simulated in software, based on a reference trajectory cho-

sen to generate an interesting observation geometry. This constant-altitude circular

flight path is constructed such that a fixed terrain patch remained in the camera field

of view throughout the flight. The simulated aircraft speed is 150 meters-per-second,

altitude is 2296 meters, and bank angle is 27 degrees which describes a circular flight

path with 4592 meter radius. The resulting slant range to the landmark is 5134 me-

ters.
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The Profgen trajectory generation software tool [40] is used to create the refer-

ence trajectory, and the resulting angular rate and specific force profiles. Simulated

inertial measurements are generated by subjecting the true angular rate and specific

force profiles to randomly generated measurement errors, with error statistics based

on the respective inertial sensor model shown in Table 5.1.

The terrain elevation is simulated as a zero-mean, Gaussian random variable.

Simulations are accomplished using a terrain elevation error standard deviation of

25 meters, representing a moderate accuracy terrain model. While sample images

are not created, simulated landmarks are randomly dispersed over the terrain, with

randomized elevations consistent with the terrain elevation error standard deviation.

All simulations use a 10-second interval between two images, which is equivalent to

18.7 degrees of arc in the horizontal plane. The simulation geometry is shown in

Fig. 6.1.

The results are shown in Fig. 6.2. In this figure, the predicted pixel location

errors for each Monte Carlo sample function are represented by a “plus” symbol. The

predicted 2-σ pixel location error bound is indicated by a line. Note the inclined

elliptical nature of the 2-σ bound is a function of the trajectory and measurement

geometry.

The same predicted pixel location errors are shown referenced to a 256×256 pixel

image in Fig. 6.3. The stochastic constraint method shows a small correspondence

search area which gives the highest probability of the landmark location. In this case,

the stochastic constraint method is an improvement over the epipolar line search

method [62] as it provides a smaller search area developed using a statistical model.

By observing the resulting elliptical geometry of the representative search space, it

can be seen that the statistical search space will not be larger than an equivalently

width-constrained epipolar search space. In general practice, the search space will be

smaller, especially when additional feature locator constraints are enforced (e.g., scale

and rotation).
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AREA OF INTEREST

Figure 6.1: Simulated flight path. In order to generate a good observation geometry,
the circular orbit is chosen such that a fixed terrain patch remains in the camera field
of view throughout the flight.
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Figure 6.2: Landmark pixel location error and predicted 2-σ bound for 25 meter
terrain elevation uncertainty. Note the actual pixel location errors are similar to the
predicted error bound. Note: X and Y axes have differing scales to show detail.
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Figure 6.3: Landmark pixel location error and predicted 2-σ bound for 25 meter
terrain elevation uncertainty referenced to a 256×256 pixel image. Note the stochastic
constraint can limit the correspondence search area significantly compared to a search
near the epipolar line.
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Figure 6.4: Northrop T-38 instrumented with synchronized digital video camera
and inertial navigation system.

6.1.2 Flight Test Experiment. In this section, the stochastic projection

method is implemented using image and inertial flight data collected on a Northrop

T-38 “Talon” aircraft. The aircraft was equipped with a day-night monochrome digital

video camera synchronized to a Honeywell H-764G Inertial Navigation System. The

camera was mounted in the cockpit, pointing out the right wing. Flight data were

collected in Fall of 2002 at Edwards Air Force Base, California.

The aircraft state dynamics are a function of the measurements from the strap-

down inertial sensors. All states are estimated in the Earth-centered Earth-fixed refer-

ence frame previously defined. The error equations were developed based on [64,71].

For this example, a three image sequence from a right turning profile is shown in

Fig. 6.5. The results of the above method for predicting the future target location

and uncertainty are shown in Fig. 6.6.

The target selected is the west corner of a building shown in Fig. 6.5. The

estimated target location and 2-σ variance shown in Fig. 6.6 shows an predicted ellip-

soidal uncertainty after one second and seven seconds of flight. Note the uncertainty

ellipse increases with flight time, as expected. In each case, incorporating camera mo-

tion information can constrain the correspondence search space significantly. Note the
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Figure 6.5: Three image sequence of an industrial area recorded during a T-38
flight, with a sample stationary ground landmark identified. Image (b) was taken
1 second after image (a). Image (c) was taken 7 seconds after image (a). The aircraft
is in a right turn approximately 3.8 kilometers from the landmark.

true landmark location remains consistent with the predicted 2-σ uncertainty ellipse

in the presence of real measurement noise and terrain model errors.

6.2 Image and Inertial Fusion Algorithm Ground Tests

After demonstrating the validity of the stochastic feature projection theory, the

algorithm is incorporated into the extended Kalman filter navigation algorithm. The

initial experiments are conducted using the sensor platform shown in Figure 5.1(a).

This system is equipped with a tactical-grade IMU and a binocular pair of Pix-

eLINK cameras. The cameras are mounted level with the platform with approxi-

mately 22 centimeters of separation.

The imaging and inertial fusion navigation algorithm is evaluated using both

simulated and experimental ground profiles. The profiles are designed to provide

a range of image types in order to exercise the feature tracking algorithm. The

simulation and results are presented in the next section.
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(a
)

Base Image (2X Zoom)

(b
)

Image 1 (2X Zoom)

(c
)

Image 2 (2X Zoom)

Figure 6.6: Predicted landmark location uncertainty using stochastic projection
method. The landmark selected is the west corner of a building in the base image (a),
represented by the crosshair. Using the stochastic projection method, the landmark
mean and 2-σ variance is projected into two subsequent images to demonstrate the
concept. The estimated landmark location and predicted 2-σ variance for image
(b) shows an ellipsoidal uncertainty after one second of flight. Image (c) shows a
further increase in the uncertainty after seven seconds of flight. In each subsequent
image, constraining the correspondence search for the landmark to the ellipsoidal
region reduces the required search area and would eliminate false matches with other
features with a similar appearance (e.g., other building corners).
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6.2.1 Simulation. The algorithm is tested using a Monte Carlo simulation

of a standard indoor profile. The profile consists of a straight corridor, designed to

be similar to the indoor experimental data collection presented in Section 6.2.2.

An accurate simulation of the navigation environment requires simulating the

performance of the sensors in response to a true motion trajectory. The trajectory

was generated using Profgen version 8.19 software package [40]. For each Monte Carlo

navigation simulation run, the inertial sensor measurements are generated using the

true trajectory and an inertial sensor error model.

Because of the inherent complexity of the optical environment, it is beyond the

scope of this research to generate simulated images. Instead, a simulated feature set is

created by randomly distributing features along a corridor surrounding the true tra-

jectory. The features are each given random descriptor vectors in order to exercise the

feature tracking algorithm. While this optical simulation method is appropriate for

testing the image and inertial fusion algorithm, the results are not directly comparable

to the real system performance, because imaging issues such as lighting conditions,

motion blur, and affine changes in the feature descriptor due to pose changes are not

modeled.

The simulated corridor is 3 meters wide, 3 meters high, and approximately 300

meters long. Features are randomly generated on the walls, floor and ceiling of the

corridor with an average spacing of 0.25 features per square meter. Each feature

is given a random primary length and orientation, which, combined with the true

pose of the sensor, results in accurately simulated scale and orientation parameters in

feature space. After a 60-second stationary alignment, the sensor platform accelerates

to 0.5 meters per second, maintains this velocity until the end of the corridor, then

accelerates to a stop at the end. The platform remains stationary for 60 seconds after

coming to a stop. This results in a 660-second image and inertial navigation profile.

Simulated images are collected at 2 Hz.
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A Monte Carlo simulation is conducted using inertial sensor models representing

the H1700 tactical-grade IMU and the Crista consumer-grade IMU. Each simulation

consists of 60 runs, each with randomly generated inertial measurement errors due to

random walks, sensor bias, and sensor scale-factor errors. In order to mitigate any

potential effects due to the location of the features in the simulated environment, the

feature locations and descriptors are randomly generated every 20 runs.

The position, velocity, and attitude errors using the tactical-grade IMU are

shown in Figures 6.7-6.9. As expected, the inertial and imaging measurement errors

accumulate, resulting in position and attitude drift.

The position, velocity, and attitude errors using the consumer-grade IMU are

shown in Figures 6.10-6.12. In addition to proportionally larger errors in position,

velocity, and attitude, significant excursions are noticed, especially in the attitude

channels.

Root-sum-squared (RSS) errors are analyzed in order to provide a one-dimensional

metric for a more direct comparison of the simulated system performance for different

profiles. The RSS errors comparing the free-inertial and image-aided performance

is shown in Figures 6.13-6.15. Over the 10-minute indoor profile, incorporating the

image-aiding measurements improves the errors for both the consumer and tactical-

grade sensors by many orders of magnitude. In addition, the image-aided consumer-

grade sensor nearly equals the position error performance of the image-aided tactical-

grade sensor, until the consumer-grade sensor begins to show some attitude diver-

gences after approximately 400 seconds.

In this section, the proposed image and inertial navigation system is tested

using a simulated indoor profile. The Monte Carlo simulation predicts dramatic im-

provements when fusing image and inertial measurements for both consumer and

tactical-grade inertial sensors, which is an indicator of the significant navigation in-

formation provided by properly integrated image updates. In the next section, the

experimental data collection profiles and results are presented.
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Figure 6.7: Simulated 60-run Monte Carlo position error results for indoor profile
with a tactical-grade inertial sensor and image aiding using landmarks of opportu-
nity. The position error sample functions are indicated by blue dotted lines. The
ensemble mean and standard deviation are indicated by the green and red solid lines,
respectively.
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Figure 6.8: Simulated 60-run Monte Carlo velocity error results for indoor profile
with a tactical-grade inertial sensor and image aiding using landmarks of opportu-
nity. The velocity error sample functions are indicated by blue dotted lines. The
ensemble mean and standard deviation are indicated by the green and red solid lines,
respectively.
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Figure 6.9: Simulated 60-run Monte Carlo attitude error results for indoor profile
with a tactical-grade inertial sensor and image aiding using landmarks of opportu-
nity. The attitude error sample functions are indicated by blue dotted lines. The
ensemble mean and standard deviation are indicated by the green and red solid lines,
respectively.
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Figure 6.10: Simulated 60-run Monte Carlo position error results for indoor profile
with a consumer-grade inertial sensor and image aiding using landmarks of oppor-
tunity. The position error sample functions are indicated by blue dotted lines. The
ensemble mean and standard deviation are indicated by the green and red solid lines,
respectively.
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Figure 6.11: Simulated 60-run Monte Carlo velocity error results for indoor profile
with a consumer-grade inertial sensor and image aiding using landmarks of oppor-
tunity. The velocity error sample functions are indicated by blue dotted lines. The
ensemble mean and standard deviation are indicated by the green and red solid lines,
respectively.
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Figure 6.12: Simulated 60-run Monte Carlo attitude error results for indoor profile
with a consumer-grade inertial sensor and image aiding using landmarks of oppor-
tunity. The attitude error sample functions are indicated by blue dotted lines. The
ensemble mean and standard deviation are indicated by the green and red solid lines,
respectively.
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Figure 6.13: Simulated 60-run Monte Carlo root-sum-squared (RSS) horizontal
position error for indoor profile using both consumer-grade and tactical-grade inertial
sensors. The results are shown for four cases: 1) consumer-grade free inertial, 2)
consumer-grade opportunity landmark tracking, 3) tactical-grade free inertial, and 4)
tactical-grade opportunity landmark tracking.
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Figure 6.14: Simulated 60-run Monte Carlo root-sum-squared (RSS) velocity error
for indoor profile using both consumer-grade and tactical-grade inertial sensors. The
results are shown for four cases: 1) consumer-grade free inertial, 2) consumer-grade
opportunity landmark tracking, 3) tactical-grade free inertial, and 4) tactical-grade
opportunity landmark tracking.
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Figure 6.15: Simulated 60-run Monte Carlo root-sum-squared (RSS) attitude error
for indoor profile using both consumer-grade and tactical-grade inertial sensors. The
results are shown for four cases: 1) consumer-grade free inertial, 2) consumer-grade
opportunity landmark tracking, 3) tactical-grade free inertial, and 4) tactical-grade
opportunity landmark tracking.
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START/FINISH

CAMERA DIRECTION CAMERA DIRECTION

CAMERA DIRECTION

Figure 6.16: Outdoor ground data collection profile. The image-aided inertial nav-
igation sensor is tested by traversing a U-shaped path and returning to the start
position.

6.2.2 Experiment. The algorithm is tested experimentally using two ground

navigation profiles designed to examine the operation of the feature tracking system in

a real-world environment. The first profile consisted of a closed path over an outdoor

parking area, shown in Figure 6.16. The outdoor path was traversed forward and

backwards with the camera pointed toward the outside of the path. This trajectory

resulted in seven segments that presented a scene change and forced the filter to search

for new features. This outdoor scene consisted of a combination of man-made features

(buildings, fences, roads, etc.) and natural features such as grass and trees. The

profile began with a 10-minute stationary alignment period, followed by four minutes

of navigation using only images and inertial measurements. No prior knowledge was

used with any feature. The filter was limited to a maximum of ten features at any

time. A sample image from the outdoor profile is shown in Figure 6.17.

This profile presents the algorithm with a challenging feature tracking environ-

ment due to the high-contrast lighting conditions, large variation in feature distance
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Figure 6.17: Sample image from outdoor data collection. The outdoor data collec-
tion presents the filter with a combination of man-made and natural features. The
crosses and ellipses indicate the locations and uncertainty of currently tracked land-
marks.
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(zero to infinite), and complicated images with semi-transparent objects overlapping

at different ranges (e.g., multiple layers of tree limbs).

The filter successfully utilizes inertial measurements to predict and constrain

the image correspondence search during the entire profile. In return, the feature

correspondence updates and corrects the inertial measurement errors and significantly

reduces the resulting drift in the navigation solution. Over the four-minute non-

stationary profile, the navigation errors are estimated to be less than 1 meter in the

horizontal plane and less than 3 meters in the vertical, when the image-aided inertial

algorithm is enabled. Typical free-inertial performance for this inertial sensor is on

the order of thousands of meters horizonal error. In addition, the unstable nature of

the vertical channel during free-inertial navigation requires external aiding in order

to maintain stability [64]. These initial results clearly show the benefits of the image-

aided inertial navigation method.

The second profile consisted of a closed path in an indoor environment. The path

began and ended at the same location and orientation in the Advanced Navigation

Technology (ANT) Center laboratory, at the Air Force Institute of Technology. As in

the previous profile, the data collection began with a 10-minute stationary alignment

period. After the alignment period, the sensor was moved in a 10-minute loop around

the hallways of the building. In contrast to the previous profile, the sensor was pointed

primarily in the direction of travel. No prior knowledge was provided to the algorithm

regarding the location of features or structure of the environment. A sample image

from the indoor profile is shown in Figure 6.18.

The indoor profile presents the algorithm with different challenges from a fea-

ture tracking perspective. The indoor environment consists of repetitive, visually

identical features (e.g., floor tiles, lights, etc.), which can easily cause confusion for

the feature tracking algorithm. In addition, reflections from windows and other shiny

surfaces might not be interpreted properly by the filter and could potentially result

in navigation errors. Finally, the lower light intensity levels and large areas with poor
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Figure 6.18: Sample image from indoor data collection. The indoor data collection
presents the filter with man-made features in an office environment. The crosses and
ellipses indicate the locations and uncertainty of currently tracked landmarks.

contrast (e.g., smooth, featureless walls) presents a relatively stark feature space. The

indoor profile is performed twice for both the tactical and navigation-grade sensors.

As with the previous profile, the filter performs well. The filters’ estimates of

the trajectories are overlayed on a floor plan of the building in Figures 6.19 and 6.20

for the tactical and consumer-grade inertial sensors, respectively. In each figure, a

comparison is made between the fused image-aided inertial trajectory estimate, the

image-aided inertial trajectory with stochastic constraints disabled, and a free inertial

trajectory. For both tactical and consumer-grade sensors, the estimated trajectory

generally corresponds to the building’s hallways, with excursions of less than 3 me-

ters. In addition, the results of the free-inertial trajectories show the inherent lack

of accuracy of the inertial sensor. With stochastic constraints purposely disabled,

the trajectory estimates show relatively large trajectory errors due to false correspon-

dence matches. This illustrates the catastrophic effects of incorporating false updates

into an Extended Kalman Filter with inertial feedback and demonstrates the inher-
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ent strength of applying robust correspondence methods, and in particular stochastic

constraints.

The filter’s estimated trajectory for the image-aided consumer-grade sensor (run

two) is examined in more detail in Figure 6.23, where the estimated location of land-

marks used for tracking are highlighted. Note the landmarks correspond to the build-

ing walls, ceilings, and floors. More detail of the start/stop area is shown in Fig-

ure 6.22. A comparison of all image-aided inertial navigation results for both the

tactical and consumer-grade sensors is shown in Figure 6.21. The difference in the

estimated start and stop locations shows the accumulated errors in the filter over the

path. Over the 10-minute profile, the path closure errors are less than 5 m in the

horizontal plane and less than 5 m in the vertical for all sensors. Again, this is a

significant improvement over the free-inertial performance. The results are particu-

larly impressive as the solution is calculated using an online algorithm, with only raw

inertial and image data. No a-priori knowledge of the environment is provided to the

system.

6.3 Image and Inertial Fusion Algorithm Flight Tests

In addition to the ground tests, the image and inertial fusion algorithm is evalu-

ated using a flight profile. The flight environment presents a different set of challenges

to the system than the indoor environment. First, the dynamic range from the sensor

to landmarks is large, which limits the usefulness of binocular ranging. While binoc-

ular measurements can provide reliable distance estimates for close landmarks, they

are ineffective at longer distances. Fortunately, accurate terrain models are avail-

able to a high level of fidelity. Incorporating the terrain elevation into the landmark

location estimation eliminates the need for binocular ranging at higher altitudes. Sec-

ondly, the flight environment would typically imply longer distance navigation than

indoor conditions. Finally, due to the worldwide availability of high-quality satellite

imagery, there is an existing set of reference features which could be exploited in the

long-distance navigation problem.
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Figure 6.19: Estimated path from indoor data collection (run two) using tactical-
grade inertial sensor. The filter’s estimate of the path (indicated by the solid line)
agrees well with the known path (indicated by the dotted line). The inertial-only best
estimate of trajectory (indicated by the dash-dotted line) and image-aided inertial
with stochastic constraints disabled (indicated by the dashed line) show large errors
in position and heading. The inertial-only solution exceeds the scale of the image
after 156 seconds.
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Figure 6.20: Estimated path from indoor data collection (run two) using consumer-
grade inertial sensor. The filter’s estimate of the path (indicated by the solid line)
agrees well with the known path (indicated by the dotted line). The inertial-only best
estimate of trajectory (indicated by the dash-dotted line) and image-aided inertial
with stochastic constraints disabled (indicated by the dashed line) show large errors
in position and heading. The inertial-only solution exceeds the scale of the image
after 11 seconds.
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Approximate reference path
Tactical−grade run 1
Tactical−grade run 2
Consumer−grade run 1
Consumer−grade run 2

Figure 6.21: Performance comparison for image-aided tactical and consumer-grade
inertial sensors for indoor profile runs one and two. The common start and stop
location for both runs is indicated by the “o” symbol. The estimated stop location
for each run is indicated by an “x” symbol.
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Approximate reference path
Tactical−grade run 1
Tactical−grade run 2
Consumer−grade run 1
Consumer−grade run 2

Figure 6.22: Enhanced detail of the start/stop area illustrating the estimated tra-
jectory and feature locations for both the image-aided tactical and consumer-grade
inertial sensors for indoor profile runs one and two. The difference between the esti-
mated start and stop location illustrates the accumulated position error.
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a) Entire path estimate b) First half of path with tracked feature locations

c) Second half of path with tracked feature locations d) Start/stop area detail

Figure 6.23: Estimated path and feature locations from indoor data collection (run
two) for consumer-grade inertial sensor. Pane (a) shows the entire path estimate.
Pane (b) shows the first half of the path along with the estimated location of the
features (indicated by “x” symbols). Pane (c) shows the last half of the path and
estimated feature locations. Pane (d) provides detail of the start/stop area.
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Although experimental flight data was collected, poor-quality truth data were

collected due to installation issues with the GPS antenna. This poor GPS observ-

ability resulted in a low-quality sensor calibration (see Section 5.2.2). As such, the

resulting image-aided inertial navigation solution is difficult to evaluate. Additional

flight data collections are required with reliable navigation and ground truth for an

accurate system analysis.

As a result, the imaging and inertial fusion navigation algorithm is evaluated

using a simulated flight profile. The profile is designed to evaluate the performance of

the system in a flight environment using various levels of prior knowledge regarding

the scene. The simulation setup and results are presented in the next section.

6.3.1 Simulation. Three simulation profiles are tested to evaluate the per-

formance of the system with varying levels of prior scene knowledge. These knowledge

levels represent three cases. Case one is that of navigation over terrain with unknown

optical features, which is similar to the ground navigation problem presented in the

previous section, with the exception that a statistical terrain model is used to estimate

the feature distance versus binocular stereopsis. Case two evaluates the capability of

the algorithm to recall previously estimated landmark locations and use them to up-

date the navigation system. This would be representative of a loitering pattern over

unknown territory. Finally, the algorithm is evaluated for the case where registered

imagery (and the resulting registered landmark set) are available.

In order to match the experimental data collection, the simulation trajectory

is a 14-km, oval holding pattern, flown at 1000 feet above ground level (AGL). A

groundspeed of 50 m/s was flown, which results in a 10-minute pattern. The terrain

is modeled as relatively flat with a 5-meter standard deviation. The camera is modeled

after the flight system, with a 4.8-mm lens and angled at 45 degrees toward the ground.

Both the H1700 tactical-grade and Crista consumer-grade IMUs are evaluated in the

simulation. Each profile begins with a 60 second in-flight alignment, during a straight

and level portion of the trajectory. The filter is limited to 12 concurrent landmark

166



tracks. A total of 30 simulated runs are conducted with randomized image and inertial

measurements.

The tactical-grade IMU errors are shown in Figures 6.24-6.26. Four profiles

are simulated. The first establishes a baseline of performance for the tactical-grade

IMU with only barometric altimeter updates and no image aiding. As expected, the

free inertial horizontal position error diverges quickly. Enabling the image aiding

using landmarks of opportunity shows an improvement in position error. After 1200

seconds and two laps of the holding pattern, the image-aided horizontal root-sum-

squared (RSS) error is less than 100 meters. The potential benefits of leveraging

previously-learned landmarks can be seen at 620 seconds into the profile, where the

second pass of the holding pattern begins. The navigation errors are reduced due

to the relatively high-quality landmark location estimates available from the initial

portion of the first pass. Finally, enabling the use of reference landmarks with known

locations shows a consistent, meter-level, horizontal RSS error, which indicates the

high-level of navigation potential available from an image-aided inertial navigation

system combined with reference images.

The Monte Carlo simulation is repeated using the Crista inertial sensor model.

The results are shown in Figures 6.27-6.29. Due to the relatively low-quality of this

sensor, the free inertial (with barometric altimeter aiding) solution quickly diverges

and is not useful for navigation for more than approximately 20 seconds. Enabling

image-aiding using landmarks of opportunity shows significant improvement in the

navigation performance while also revealing a significant source of error in the ex-

tended Kalman filter, which is amplified by the low-quality inertial measurements.

As the filter errors increase, two issues occur which violate the assumptions of the

extended Kalman filter: 1) the nonlinear dynamics were developed assuming small

errors, and 2) the landmark measurement influence matrices are calculated assuming

small errors. Both issues contribute to filter instability as the errors in the naviga-

tion state are not well represented by the state error covariance maintained by the
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Figure 6.24: Simulated 30-run Monte Carlo root-sum-squared (RSS) horizontal po-
sition error for flight profile using a tactical-grade inertial sensor. The results are
shown for four cases: 1) image updates disabled, 2) opportunity landmark track-
ing with terrain model, 3) opportunity landmark tracking with self-learning, and 4)
landmark with known location tracking.
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Figure 6.25: Simulated root-sum-squared (RSS) velocity error for flight profile us-
ing a tactical-grade inertial sensor. The results are shown for four cases: 1) image
updates disabled, 2) opportunity landmark tracking with terrain model, 3) oppor-
tunity landmark tracking with self-learning, and 4) landmark with known location
tracking. The errors were calculated using a 30-run Monte Carlo analysis.
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Figure 6.26: Simulated root-sum-squared (RSS) attitude error for flight profile us-
ing a tactical-grade inertial sensor. The results are shown for four cases: 1) image
updates disabled, 2) opportunity landmark tracking with terrain model, 3) oppor-
tunity landmark tracking with self-learning, and 4) landmark with known location
tracking. The errors were calculated using a 30-run Monte Carlo analysis.
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filter [38]. In this simulation, the filter would quickly diverge after approximately 500

seconds.

In order to investigate this issue further, the Monte Carlo simulation is modified

such that the linearization errors for image updates are artificially removed. All other

error sources are enabled. Referencing Figures 6.27-6.29, shows significantly improved

performance, which indicates that the image-update influence matrix calculation is

the likely culprit. This being the case, particular attention must be paid to addressing

these fundamental error sources, especially when large errors are expected.

The final Monte Carlo examines the performance when enabling reference land-

marks with known locations. As with the tactical-grade simulation, the filter shows

a consistent, meter-level, horizontal RSS error, which indicates the high-level of nav-

igation potential available from an image-aided inertial navigation system combined

with reference images, even with a low-quality inertial reference. In this scenario, the

reference landmark updates dominate the performance of the inertial sensor, which, in

essence, causes the filter to use the inertial sensor primarily to statistically constrain

the correspondence search. Once a successful correspondence is determined, the filter

weights the reference landmark update strongly, as expected, which is indicated by

the comparable performance between the tactical and consumer grade sensors using

reference landmark updates.

In the next chapter, conclusions are drawn regarding the performance of the

system and contributions to the state of the science of navigation are highlighted.
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Figure 6.27: Simulated root-sum-squared (RSS) horizontal position error for flight
profile using a consumer-grade inertial sensor. The results are shown for four cases:
1) image updates disabled, 2) opportunity landmark tracking with terrain model,
3) opportunity landmark tracking with linearization error removal, and 4) landmark
with known location tracking. The errors were calculated using a 30-run Monte Carlo
analysis. The landmark of opportunity simulated results were truncated prior to
impending filter divergence due to violations of the filter assumptions due to large
errors.
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Figure 6.28: Simulated root-sum-squared (RSS) velocity error for flight profile us-
ing a consumer-grade inertial sensor. The results are shown for four cases: 1) image
updates disabled, 2) opportunity landmark tracking with terrain model, 3) opportu-
nity landmark tracking with linearization error removal, and 4) landmark with known
location tracking. The errors were calculated using a 30-run Monte Carlo analysis.
The landmark of opportunity simulated results were truncated prior to impending
filter divergence due to violations of the filter assumptions due to large errors.
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Figure 6.29: Simulated root-sum-squared (RSS) attitude error for flight profile
using a consumer-grade inertial sensor. The results are shown for four cases: 1)
image updates disabled, 2) opportunity landmark tracking with terrain model, 3)
opportunity landmark tracking with linearization error removal, and 4) landmark
with known location tracking. The errors were calculated using a 30-run Monte Carlo
analysis. The landmark of opportunity simulated results were truncated prior to
impending filter divergence due to violations of the filter assumptions due to large
errors.
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VII. Conclusions

This dissertation presents an approach for fusing optical and inertial sensors

for robust, self-contained, passive, autonomous navigation. In this chapter,

conclusions regarding the research effort are presented and discussed. In addition,

potential areas for future research are addressed.

7.1 Conclusions

The most significant conclusion for this work is the demonstration of the viability

of fusing imaging and inertial sensors for navigation. As mentioned in Chapter I, the

goal for this research is to develop a method for integrating the sensors at a deeper level

than the current state-of-the art. The technique is incorporated into an automated

image-aided inertial navigation system and tested using simulation and experimental

methods.

The novel sensor fusion technique is created by defining the feature space and

developing the mathematics required to perform statistically rigorous transformations

in this space to predict the features at a future time. The stochastic projection

method successfully leverages the collection of inertial measurements between images

to predict the location and uncertainty region of features which aids the attendant

feature correspondence algorithm. The performance of this algorithm is demonstrated

using both simulation and experiments in Chapter IV. In both cases, the experiments

confirm the validity and accuracy of the stochastic projections.

The feature transformation algorithm is derived using fundamental stochastic

models for various imaging conditions. Using these models, the statistical feature

space transformation algorithm is applied to both monocular and multi-sensor de-

signs for unknown, partially-known, and with fully-known information regarding the

world. The ability to accurately predict the location of a feature statistically using

all available information forms the basis of the image and inertial fusion technique.

In addition to the statistical feature transformation techniques, a new method

of calibration of imaging and inertial sensors is presented and tested. The addition of
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self-calibration states to the Kalman filter allows an integrated imaging and inertial

sensor to self-estimate calibration parameters using known optical references (e.g.,

celestial bodies and surveyed ground points) and independent measurements of the

trajectory, such as GPS. This technique is evaluated using simulation, ground, and

flight data. In each experiment, the observability of the self-calibration states is

verified and shown to be primarily related to the fundamental accuracy of the sensors.

The ability to automatically correct for calibration errors using this technique enables

the system to compensate for these errors outside of the laboratory environment.

A key contribution of this work is the development and implementation of the

deep-integration theory in an experimental imaging and inertial navigation sensor.

The image-aided inertial navigation system is evaluated using a combination of simu-

lation, ground, and flight tests. In each experiment, the image-aided inertial naviga-

tion system consistently demonstrates several orders of magnitude improvement over

the equivalent unaided inertial system (and even that of navigation-grade sensors).

This development holds a great deal of promise to produce a low-cost, navigation-

grade optical-inertial sensor for passive environments. In addition, the demonstrated

capability to store self-surveyed features and recall them when needed enables this

sensor to effectively “learn” an environment and eliminate navigation error drift while

remaining in known areas. A number of operationally-realistic scenarios which lever-

age this revolutionary concept are discussed in the next section.

As expected, the extended Kalman filter navigation algorithm shows the dele-

terious effects of linearization errors. These errors are most prevalent in the presence

of large attitude errors. When the linearization errors are artificially corrected during

simulation, the navigation filter performance is consistent with the system model.

These results show that the extended Kalman filter algorithm delivers sub-optimal

performance and improvement could be realized using an estimator which does not

suffer from the linearization errors of the extended Kalman filter. This conclusion

shows that additional research into estimation algorithms has promise and should be

investigated. Some potential approaches are presented in the next section.
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In summary, this research develops a series of techniques to provide autonomous,

passive navigation by incorporating image and inertial measurements. The method

demonstrates navigation-quality performance with low-cost sensors and passive up-

dates. While the approach demonstrates greatly improved performance over free

inertial navigation with equivalent sensors, there are areas which merit additional

research. These are addressed in the next section.

7.2 Future Work

This research presents a statistically-rigorous method to tightly integrate imag-

ing and inertial sensors. The method is used to construct a navigation system which

leverages optical signals of opportunity and does not require external navigation sig-

nals. In addition to the system presented in this research, there are many potential

areas of research which exploit the natural synergy between optical and inertial sen-

sors.

The first general area of additional research is the development and improvement

of feature transformation algorithms. While the SIFT algorithm has demonstrated

potential for image-aided navigation applications, there are other feature transforma-

tion algorithms which should be investigated. A revised SIFT algorithm has been

proposed by Ke [27] which replaces the feature descriptor calculation of SIFT with a

principal component analysis (PCA)-based decomposition. The PCA-SIFT algorithm

has demonstrated improved feature matching performance over the traditional SIFT

algorithm.

Conceptually, the most desirable feature transformation algorithm is one in

which the location and object description dimensions are truly orthogonal. In simpler

terms, the ideal transformation algorithm would detect and recognize distinct objects,

in a similar manner to humans. Once an object was recognized, an additional level

of navigation information could be extracted from the object, include a direct mea-

surement of orientation and range. Inferring range information from the apparent

size of an object with known dimensions is referred to as stadiametric ranging and
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is commonly used for target ranging when external ranging sources are unavailable.

The additional information provided by this type of measurement would theoretically

improve the navigation performance of such a system, and could reduce the effects of

linearization errors which were evident in the extended Kalman filter algorithm used

in this research.

The next level of potential research is to explore a potentially deeper level of

integration between inertial and imaging sensors. The concept would entail incorpo-

rating inertial measurements at the feature transformation level. In general terms,

the approach can be clarified as follows. As discussed in Chapter III, the propagation

of the navigation state using inertial measurements is subject to the effects of sensor

errors, such that an uncertainty region exists when projecting the location of a feature

from one image to the next. This uncertainty region is a function of three primary

sources of error: 1) the initial uncertainty of the navigation state, 2) the accuracy

of the inertial sensors, and 3) the integration time. Since the uncertainty is actually

related to the relative navigation error between frames, most of the initial navigation

state uncertainty is mitigated when the navigation errors are relatively constrained.

Accordingly, if the algorithm could dynamically control the integration time (i.e., im-

age sample rate), the uncertainty region for feature projection between images could

be effectively managed. Thus, given a minimum feature size (in the feature space),

the image sample rate could be dynamically varied such that the probability of false

correspondence would be greatly reduced. Viewing the measured feature space as a

sampling of the true feature space reveals parallel concepts between this method of

false correspondence elimination and sampling theory. In fact, this proposed tech-

nique is a method of feature space anti-aliasing which uses a dynamic filter based on

inertial measurements.

In the proposed image-aided navigation filter described in this research, the

feature extraction calculations consumed the majority of computer processing time.

In order to employ such a system in real-time required optimization of the attendant

feature transformation algorithm. Two paths for improving the speed of these calcula-
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tions are proposed. First, the feature transformation algorithm could be accelerated

by exploiting parallel processing and pipelining. As shown in the SIFT algorithm,

feature extraction can be accomplished using separable scale-space decompositions,

which is ideal for parallel processing. The next improvement would constrain the fea-

ture extraction algorithm to the statistical search region predicted using the stochastic

projection method developed in this research. By limiting the feature transformation

calculation to a much smaller area, significant speed improvements could be realized.

Another area of promising research would investigate potential of other nonlin-

ear filtering approaches. As mentioned in Chapter VI, the extended Kalman filter is

sensitive to linearization errors, which are unmodeled. Although beyond the scope of

this research, additional estimation schemes have been proposed which address these

issues. Some examples are iterated extended Kalman filters, unscented particle filters,

and multiple model extended Kalman filters. In addition, there is potential for truly

nonlinear estimation sensors such as those found in neural networks.

As mentioned previously, there exists a natural synergy between imaging and

inertial systems. It is evident based on this research that construction of a fused

optical and inertial sensor would provide a standard, consistent, and affordable plat-

form for image-aided inertial navigation. With the recent advances in MEMS and

CMOS imaging technology, an image and inertial sensor integrated (and possible fea-

ture transformation circuits) on a single chip could open the doors for widespread

usage. In addition to ensuring excellent time-synchronization between the image and

inertial sensors, the single chip solution would virtually eliminate the need for field

calibration, and could result in a very economical, and robust sensor.

In addition to the benefits in cost and performance, integrating the imaging

and inertial sensor at the production level creates a “standard” image and inertial

navigation sensor which can benefit enormously from multi-sensor designs. Scenarios

which would greatly benefit from this scaling effect are classified as either single or

multi-ship implementations. Mounting multiple integrated sensors on a single vehicle
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Figure 7.1: Multi-sensor imaging scenario from solo vehicle. Mounting separate
integrated image and inertial sensors at the nose and from a towed sensor array would
provide a long binocular disparity which could be used for accurate range estimation,
even when targets are not simultaneously in the field of view.

would provide either a direct (single-epoch) or time-delayed stereoscopic measure-

ment, which would help to reduce the range estimation error. As shown in Figure 7.1,

mounting separate integrated sensors at the nose and tail (or towed sensor array)

of an aircraft would benefit from a relatively long binocular disparity, resulting in

accurate range estimation, even at higher altitudes.

Multi-ship implementations of the fused image and inertial navigation sensor

offer even more exciting possibilities. The demonstrated ability of the sensor algo-

rithm to “remember” features would allow each ship in the formation to effectively

share observations of the same landmark(s). This would not only allow the forma-

tion to accurately navigate relative to the world, but would provide accurate location

information for landmarks of interest in both the navigation reference frame and rel-

ative to each member of the group. In addition, because the navigation solution for

each sensor is processed in parallel, scaling effects could be minimized. Finally, if

ship-to-ship ranging information were available (e.g., based on measurements from

an existing datalink), the performance of such a system could be extremely accurate

and resistant to long-term navigation error growth, especially if the formation geom-
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Figure 7.2: Multi-vehicle cooperative navigation scenario. Vehicles equipped with
integrated image and inertial navigation systems could improve navigation and land-
mark location accuracy over non-cooperative systems, especially when the formation
could be controlled to provided maximum observability.

etry could be controlled to maximize observability. A sample multi-ship, cooperative

navigation scenario is shown in Figure 7.2.

As outlined in Chapter IV, exploiting previously recorded, georeferenced images

for navigation can provide absolute navigation information, which is critical to counter

the unbounded long-term drift associated with landmark of opportunity navigation.

Based on simulation analysis, this technique has the accuracy potential to navigate

for autonomous landing or for other situations where GPS may not be available. The

most important aspect of all of these techniques is the inherent flexibility to use any

available sources to provide the best navigation estimate possible. For example, an

image-aided navigation system could leverage landmarks of opportunity when over

unknown terrain, incorporate measurements from known landmarks when available,
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and recall previously estimated landmarks when returning to base or loitering in a

target area.

7.3 Summary

As evidenced by nature, there is a natural synergy between imaging and inertial

sensors for navigation. The key to this synergy lies in coupling both sensors at the

deepest level possible to generate robust navigation estimates under as many imaging

conditions as possible. This research presents a step in that direction, however, as

discussed in the previous section, there is much work to do. We have only begun to

realize the potential of this technology.
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Index

The index is conceptual and does not designate every occurrence of a
keyword.

acceleration, centripetal, 31

accelerometer, 2, 19

aperture, optical, 34

astrolabe, 58

batch estimation, optimal, 52

binocular disparity, 110

binocular disparity frame, 14

binocular measurement, 109

binocular stereopsis, 78

body frame, 12

camera frame, 14

combat, precision, 1

contour-matching, terrain, 62

correspondence, feature, 97

Crista IMU, 128

difference of Gaussian, 83

difference of Gaussian filter, 83

direction cosine matrix, 16

driftmeter, 61

Earth-centered Earth-fixed frame, 11

Earth-centered inertial frame, 11

Earth-fixed navigation frame, 12

ellipsoidal height, 25

epipolar, 111

Euler angles, 16, 25

feature correspondence, 97

feature space, 80

feature tracker, Lucas-Kanade, 44

feature vector, 80

filter, difference of Gaussian, 83

focus of expansion, 65

Gauss-Markov process, first-order, 28

geodetic latitude, 25

geodetic radius of meridian, 26

gradient, intensity, 88

gravitation, 31

gravity potential, 31

gravity vector, 31

gyroscope, 19

gyroscopes, 3

Harris corner detector, 44

Harris detail metric, 45

homogeneous pointing vector, 104

Honeywell HG1700, 128

image, 3, 35

inertial reference frame, 11

intensity gradient, 88

irradiance, 35

landmark, 90

landmarks, opportunity, 100

landmarks, reference, 100

latitude, geodetic, 25

lever arm, 14

linear regression, 52

longitude, 25

Lucas-Kanade feature tracker, 44
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measurement model, accelerometer, 28

measurement model, gyroscopic, 28

misclosure vector, 54

navigation, 2

navigation reference frame, 10

navigation, relative, 120

nonlinear regression, 53

operator, skew-symmetric, 17

optical flow, 62

perturbation equation, linear, 18

photon arrival rate, 35

photon counting noise, 37

pitch angle, 25

point spread function, 35

pose metric, 99

precision combat, 1

principal component analysis, 176

quantization noise, 37

radial distortion, 44

radiance, 35

reference frame, binocular disparity, 14

reference frame, body, 12

reference frame, camera, 14

reference frame, Earth-centered Earth-fixed,

11

reference frame, Earth-centered inertial, 11

reference frame, Earth-fixed navigation, 12

reference frame, inertial reference, 11

reference frame, navigation, 10

reference frame, vehicle-fixed navigation,

11

relative navigation, 120

roll angle, 25

scene, 3, 35

sextant, 58

shot noise, 37

SIFT, 82

skew-symmetric operator, 17

specific force, 2, 19, 31

stadiametric ranging, 176

state transition matrix, 94

strapdown inertial sensors, 14

TERCOM, 62

thin lens equation, 38

track management, 102

vehicle-fixed navigation frame, 11

velocity vector, 25

VLSI, 63

voxel, 88

yaw angle, 25
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The motivation of this research is to address the limitations of satellite-based navigation by fusing imaging and iner-
tial systems. The research begins by rigorously describing the imaging and navigation problem and developing practical
models of the sensors, then presenting a transformation technique to detect features within an image. Given a set of fea-
tures, a statistical feature projection technique is developed which utilizes inertial measurements to predict vectors in
the feature space between images. This coupling of the imaging and inertial sensors at a deep level is then used to aid
the statistical feature matching function. The feature matches and inertial measurements are then used to estimate the
navigation trajectory using an extended Kalman filter. After accomplishing a proper calibration, the image-aided inertial
navigation algorithm is then tested using a combination of simulation and ground tests using both tactical and consumer-
grade inertial sensors. While limitations of the Kalman filter are identified, the experimental results demonstrate a navi-
gation performance improvement of at least two orders of magnitude over the respective inertial-only solutions.

navigation, image processing, image registration, image-aided navigation, feature tracking, inertial navigation, passive
navigation, autonomous navigation, simultaneous location and mapping (SLAM), computer vision, correspondence
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